scholarly journals Still no evidence for disruption of global patterns of nest predation in shorebirds

2021 ◽  
Author(s):  
Martin Bulla ◽  
Mihai Valcu ◽  
Bart Kempenaers

SummaryMany shorebird species are rapidly declining (Piersma et al. 2016; Munro 2017; Studds et al. 2017), but it is not always clear why. Deteriorating and disappearing habitat, e.g. due to intensive agriculture (Donal et al. 2001; Kentie et al. 2013; Kentie et al. 2018), river regulation (Nebel et al. 2008) or mudflat reclamation (Ma et al. 2014; Larson 2017), and hunting (Reed et al. 2018; Gallo-Cajiao et al. 2020) are some of the documented causes. A recent study suggests yet another possible cause of shorebird decline: a global increase in nest predation (Kubelka et al. 2018). The authors compiled an impressive dataset on patterns of nest predation in shorebirds and their analyses suggest that global patterns of nest predation have been disrupted by climate change, particularly in the Arctic. They go as far as to conclude that the Arctic might have become an ecological trap (Kubelka et al. 2018). Because these findings might have far-reaching consequences for conservation and related political decisions, we scrutinized the study and concluded that the main conclusions of Kubelka et al. (2018) are invalid (Bulla et al. 2019a). The authors then responded by reaffirming their conclusions (Kubelka et al. 2019b).Here, we evaluate some of Kubelka et al.’s (2019b) responses, including their recent erratum (2020), and show that the main concerns about the original study still hold. Specifically, (1) we reaffirm that Kubelka et al.’s (2018) original findings are confounded by study site. Hence, their conclusions are over-confident because of pseudo-replication. (2) We reiterate that there is no statistical support for the assertion that predation rate has changed in a different way in the Arctic compared to other regions. The relevant test is an interaction between a measure of time (year or period) and a measure of geography (e.g., Arctic vs the rest of the world). The effect of such an interaction is weak, uncertain and statistically non-significant, which undermines Kubelka et al.’s (2018) key conclusion. (3) We further confirm that the suggested general increase in predation rates over time is at best a weak and uncertain trend. The most parsimonious hypothesis for the described results is that the temporal changes in predation rate are an artefact of temporal changes in methodology and data quality. Using only high-quality data, i.e. directly calculated predation rates, reveals no overall temporal trend in predation rate. Below we elaborate in detail on each of these points.We conclude that (i) there is no evidence whatsoever that the pattern in the Arctic is different from that in the rest of the world and (ii) there is no solid evidence for an increase in predation rate over time. While we commend Kubelka et al. for compiling and exploring the data, we posit that the data underlying their study, and perhaps all currently available data, are not sufficient (or of sufficient quality) to test their main hypotheses. We call for standardized and consistent data collection protocols and experimental validation of current methods for estimating nesting success.

2019 ◽  
Author(s):  
Martin Bulla ◽  
Jeroen Reneerkens ◽  
Emily L. Weiser ◽  
Aleksandr Sokolov ◽  
Audrey R. Taylor ◽  
...  

AbstractKubelka et al. (Science, 9 November 2018, p. 680-683) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


The Condor ◽  
2002 ◽  
Vol 104 (3) ◽  
pp. 496-506 ◽  
Author(s):  
W. Matthew Vander Haegen ◽  
Michael A. Schroeder ◽  
Richard M. DeGraaf

Abstract Clearing of shrubsteppe communities for agriculture has created a highly fragmented landscape in eastern Washington, a condition that has been shown to adversely affect nesting success of birds in some forest and grassland communities. We used artificial nests monitored by cameras to examine relative effects of fragmentation, distance to edge, and vegetation cover on nest predation rates and to identify predators of shrubsteppe-nesting passerines and grouse. Predation rate for artificial nests was 26% (n = 118). Fragmentation had a strong influence on predation rates for artificial nests, with nests in fragmented landscapes about 9 times more likely to be depredated as those in continuous landscapes. Daily survival rate (± SE) for 207 real nests of 4 passerine species also was greater in continuous (0.978 ± 0.004) than in fragmented (0.962 ± 0.006) landscapes, although pattern of predation between real and artificial nests was not consistent among sites. Artificial nests were depredated by Common Ravens (Corvus corax), Black-billed Magpies (Pica hudsonia), Sage Thrashers (Oreoscoptes montanus), least chipmunks (Tamias minimus), and mice. Most nests in fragments were depredated by corvids (58%), whereas only Sage Thrashers and small mammals depredated nests in continuous landscapes. Increased predation by corvids and lower nest success in fragmented landscapes may have played a part in recent declines of some shrubsteppe birds. Future research should measure annual reproductive success of individual females and survival rates of juveniles and adults. Depredación de Nidos Naturales y Artificiales en Paisajes de Estepa Arbustiva Fragmentados por Agricultura Resumen. El reemplazo de estepa arbustiva por campos de cultivo ha creado un paisaje altamente fragmentado en el este de Washington, afectando adversamente el éxito de nidificación de aves en algunas comunidades de bosque y pastizal. Usamos nidos artificiales monitoreados por cámaras para examinar los efectos relativos de la fragmentación, la distancia al borde y la cobertura de la vegetación sobre las tasas de depredación de nidos, y para identificar los depredadores de paserinos y gallinas silvestres (Phasianidae) que nidifican en la estepa arbustiva. La tasa de depredación de los nidos artificiales fue del 26% (n = 118). La fragmentación tuvo una fuerte influencia en las tasas de depredación de nidos artificiales, ya que los nidos en paisajes fragmentados tuvieron una probabilidad de ser depredados 9 veces mayor que aquellos en paisajes continuos. La tasa de supervivencia diaria (± EE) de 207 nidos naturales pertenecientes a 4 especies de paserinos también fue mayor en paisajes continuos (0.978 ± 0.004) que fragmentados (0.962 ± 0.006), aunque el patrón de depredación entre nidos naturales y artificiales no fue consistente entre sitios. Los nidos artificiales fueron depredados por Corvus corax, Pica hudsonia, Oreoscoptes montanus, Tamias minimus y ratones. La mayoría de los nidos en fragmentos fueron depredados por C. corax (58%), mientras que sólo O. montanus y pequeños mamíferos depredaron nidos en paisajes continuos. Un incremento en la depredación por parte de C. corax y un menor éxito de los nidos en paisajes fragmentados puede haber jugado un rol en la disminución de algunas aves de la estepa arbustiva. Futuras investigaciones deberían medir el éxito reproductivo anual de hembras individuales y las tasas de supervivencia de juveniles y adultos.


2016 ◽  
Vol 15 (2) ◽  
pp. 137 ◽  
Author(s):  
Melina Soledad Simoncini ◽  
María Virginia Parachú Marcó ◽  
Thiago Costa Gonçalves Portelinha ◽  
Carlos Ignacio Piña

Predation is a major cause of crocodilian egg loss. However, at present, the mechanisms by which predators detect nests is unknown. Previous studies have reported that predators are able to detect prey using both visual and olfactory cues. This study aims to determine the natural predation rate on Broad-snouted Caiman (Caiman latirostris) nests in a “normal” year (i.e., no extreme climatic events) and whether olfactory or visual cues attract predators to caiman nests, and to evaluate the effect of maternal presence on nest predation. In December 2010, we searched for nests in the north of Santa Fe Province, Argentina. Each nest was assigned to one of the following treatments: (1) control nests (nests were observed from a distance to avoid disturbance), (2) visual attraction nests (yellow flagging tapes were tied to vegetation around the nest), (3) olfactory attraction nests (nests were opened, one egg from the clutch was broken, and then the nests were covered again), (4) olfactory attraction from human disturbance (material was manipulated by researchers). The natural predation rate on broad-snouted caiman nests was found to be 21% during the nesting season. Both olfactory and visual cues were associated with increased predation rates, and human disturbance was strongly associated with increased nest predation at terrestrial sites. Predation rates were less at nests attended by female caiman. Management programs that harvest eggs in wild populations (ranching) are predicated on the assumption that removal of some eggs is sustainable, because some will be lost to natural causes (e.g., predation and flooding) and the remaining hatchlings will have improved survival rates. To reduce nest predation of Broad-snouted Caiman between the time when the nest is found and when the eggs are collected, we propose to avoid identification of nest sites with highly visible markings (e.g., flagging tapes tied to vegetation around nests) and to collect eggs immediately after they are found


1999 ◽  
Vol 29 (12) ◽  
pp. 1911-1915 ◽  
Author(s):  
J Douglas Steventon ◽  
Peter K Ott ◽  
Kenneth L MacKenzie

Based on relative abundance data, partial cutting has been suggested as a technique to maintain habitat for birds associated with late-seral forests, but there has been little study of partial cutting effects on nesting success. One of the primary limitations to nesting success is nest predation. We compared predation rates (proportion of nests disturbed in a 14-day period) in partially cut (30 or 60% basal area removal), clearcut, and uncut forests in northwestern British Columbia, in two experiments using ground-placed (1993) and shrub-placed (1998) artificial nests. In the ground-nest experiment there was a very low predation rate (0.06) and no detectable difference among treatments (p = 0.403). In the shrub-nest experiment, there was a 0.36 predation rate and little evidence of treatment differences (p = 0.295). Based on 90% confidence intervals for differences in observed predation rate, the 30% removal clearly did not increase predation risk relative to uncut forest. With the 60% removal, however, we cannot rule out a possible increase in predation risk compared with either uncut forest or clearcuts.


2010 ◽  
Vol 138 (4) ◽  
pp. 1459-1473 ◽  
Author(s):  
Kenneth R. Knapp ◽  
Michael C. Kruk

Abstract Numerous agencies around the world perform postseason analysis of tropical cyclone position and intensity, a process described as “best tracking.” However, this process is temporally and spatially inhomogeneous because data availability, operational techniques, and knowledge have changed over time and differ among agencies. The net result is that positions and intensities often vary for any given storm for different agencies. In light of these differences, it is imperative to analyze and document the interagency differences in tropical cyclone intensities. To that end, maximum sustained winds from different agencies were compared using data from the International Best Track Archive for Climate Stewardship (IBTrACS) global tropical cyclone dataset. Comparisons were made for a recent 5-yr period to investigate the current differences, where linear systematic differences were evident. Time series of the comparisons also showed temporal changes in the systematic differences, which suggest changes in operational procedures. Initial attempts were made to normalize maximum sustained winds by correcting for known changes in operational procedures. The result was mixed, in that the adjustments removed some but not all of the systematic differences. This suggests that more details on operational procedures are needed and that a complete reanalysis of tropical cyclone intensities should be performed.


Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. eaaw8529 ◽  
Author(s):  
Martin Bulla ◽  
Jeroen Reneerkens ◽  
Emily L. Weiser ◽  
Aleksandr Sokolov ◽  
Audrey R. Taylor ◽  
...  

Kubelka et al. (Reports, 9 November 2018, p. 680) claim that climate change has disrupted patterns of nest predation in shorebirds. They report that predation rates have increased since the 1950s, especially in the Arctic. We describe methodological problems with their analyses and argue that there is no solid statistical support for their claims.


The Auk ◽  
2000 ◽  
Vol 117 (1) ◽  
pp. 147-153 ◽  
Author(s):  
William B. Davison ◽  
Eric Bollinger

AbstractWe estimated nesting success at real and artificial nests of grassland birds to test the influence of nest type, nest position, and egg size on predation rates. We distributed wicker nests and realistic woven-grass nests baited with a clay egg and either a Northern Bobwhite (Colinus virginianus) egg or a House Sparrow (Passer domesticus) egg in four grasslands that were part of the Conservation Reserve Program in east-central Illinois. Nesting success averaged 86.5% for 12 days of exposure for artificial nests. For real nests, nesting success was markedly lower, averaging 39% over the entire nesting cycle and 59% during approximately 12 days of incubation. Wicker nests were depredated more often than woven-grass artificial nests (18% vs. 8%), and nests baited with House Sparrow eggs were depredated more often than nests baited with Northern Bobwhite eggs (22% vs. 9%). Elevated and ground nests were depredated at the same rate. Patterns of nest predation on wicker nests were markedly different from depredation patterns on real nests over time and among fields. In contrast, patterns of nest predation on realistic woven-grass nests corresponded much more closely with predation rates of real nests over time and among fields. We suggest that future artificial nest studies use nests and eggs that mimic as closely as possible the real nests and eggs of target species. Use of unrealistic artificial nests and eggs, at least in grasslands, may result in patterns of predation that do not accurately reflect those of real nests. Artificial nests of any type appear to underestimate predation rates on nests of grassland birds, possibly because of a lack of snake predation on artificial nests.


2001 ◽  
pp. 13-17
Author(s):  
Serhii Viktorovych Svystunov

In the 21st century, the world became a sign of globalization: global conflicts, global disasters, global economy, global Internet, etc. The Polish researcher Casimir Zhigulsky defines globalization as a kind of process, that is, the target set of characteristic changes that develop over time and occur in the modern world. These changes in general are reduced to mutual rapprochement, reduction of distances, the rapid appearance of a large number of different connections, contacts, exchanges, and to increase the dependence of society in almost all spheres of his life from what is happening in other, often very remote regions of the world.


Sign in / Sign up

Export Citation Format

Share Document