scholarly journals The evolutionary history of a gammaretrovirus currently colonizing the mule deer genome is marked by extensive recombination

2021 ◽  
Author(s):  
Lei Yang ◽  
Raunaq Malhotra ◽  
Rayan Chikhi ◽  
Daniel Elleder ◽  
Theodora Kaiser ◽  
...  

AbstractBackgroundAll vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although it is clear that endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term co-evolution of ERV and host. Newly colonized ERVs are thought unlikely to contribute to host genome evolution because germline infections are rare and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed.Here we investigate the history of cervid endogenous retrovirus (CrERV) acquisition and expansion in the mule deer genome to determine the potential impact of endogenizing retroviruses on host genomic diversity.MethodsA mule deer genome was de novo assembled from short and long insert mate pair reads. Scaffolds were further assembled using reference assisted chromosome assembly (RACA) to provide spatial orientation of CrERV insertion sites and to facilitate assembly of CrERV sequences. We applied phylogenetic and coalescent approaches to non-recombinant genomes to determine CrERV evolutionary history, augmenting ancestral divergence estimates with the prevalence of each CrERV locus in a population of mule deer. Recombination history was investigated on partial genome alignments.ResultsThe CrERV composition and diversity in the mule deer genome has recently measurably increased by horizontal acquisition of a new retroviruses lineage and because of recombination with existing CrERV. Resulting interlineage recombinants also endogenized and subsequently retrotransposed. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion by retrotransposition of one recombinant CrERV lineage.ConclusionsThere has been a burst of CrERV integrations during a recent retrovirus epizootic that increased genomic CrERV burden and has resulted in extensive insertional polymorphism in contemporary mule deer genomes. Recombination is a defining feature of CrERV evolutionary dynamics driven by this colonization, increasing CrERV burden and CrERV genetic diversity. These data support that retroviral colonization during an epizootic provides a burst of genomic diversity to the host population.

Author(s):  
Lei Yang ◽  
Raunaq Malhotra ◽  
Rayan Chikhi ◽  
Daniel Elleder ◽  
Theodora Kaiser ◽  
...  

Abstract All vertebrate genomes have been colonized by retroviruses along their evolutionary trajectory. Although endogenous retroviruses (ERVs) can contribute important physiological functions to contemporary hosts, such benefits are attributed to long-term coevolution of ERV and host because germline infections are rare and expansion is slow, and because the host effectively silences them. The genomes of several outbred species including mule deer (Odocoileus hemionus) are currently being colonized by ERVs, which provides an opportunity to study ERV dynamics at a time when few are fixed. We previously established the locus-specific distribution of cervid ERV (CrERV) in populations of mule deer. In this study, we determine the molecular evolutionary processes acting on CrERV at each locus in the context of phylogenetic origin, genome location, and population prevalence. A mule deer genome was de novo assembled from short- and long-insert mate pair reads and CrERV sequence generated at each locus. We report that CrERV composition and diversity have recently measurably increased by horizontal acquisition of a new retrovirus lineage. This new lineage has further expanded CrERV burden and CrERV genomic diversity by activating and recombining with existing CrERV. Resulting interlineage recombinants then endogenize and subsequently expand. CrERV loci are significantly closer to genes than expected if integration were random and gene proximity might explain the recent expansion of one recombinant CrERV lineage. Thus, in mule deer, retroviral colonization is a dynamic period in the molecular evolution of CrERV that also provides a burst of genomic diversity to the host population.


Viruses ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 637 ◽  
Author(s):  
Schuyler W. Liphardt ◽  
Hae Ji Kang ◽  
Laurie J. Dizney ◽  
Luis A. Ruedas ◽  
Joseph A. Cook ◽  
...  

Orthohantaviruses are tightly linked to the ecology and evolutionary history of their mammalian hosts. We hypothesized that in regions with dramatic climate shifts throughout the Quaternary, orthohantavirus diversity and evolution are shaped by dynamic host responses to environmental change through processes such as host isolation, host switching, and reassortment. Jemez Springs virus (JMSV), an orthohantavirus harbored by the dusky shrew (Sorex monticola) and five close relatives distributed widely in western North America, was used to test this hypothesis. Total RNAs, extracted from liver or lung tissue from 164 shrews collected from western North America during 1983–2007, were analyzed for orthohantavirus RNA by reverse transcription polymerase chain reaction (RT-PCR). Phylogenies inferred from the L-, M-, and S-segment sequences of 30 JMSV strains were compared with host mitochondrial cytochrome b. Viral clades largely corresponded to host clades, which were primarily structured by geography and were consistent with hypothesized post-glacial expansion. Despite an overall congruence between host and viral gene phylogenies at deeper scales, phylogenetic signals were recovered that also suggested a complex pattern of host switching and at least one reassortment event in the evolutionary history of JMSV. A fundamental understanding of how orthohantaviruses respond to periods of host population expansion, contraction, and secondary host contact is the key to establishing a framework for both more comprehensive understanding of orthohantavirus evolutionary dynamics and broader insights into host–pathogen systems.


2000 ◽  
Vol 74 (3) ◽  
pp. 1578-1586 ◽  
Author(s):  
Rui Mang ◽  
Jolanda Maas ◽  
Antoinette C. van der Kuyl ◽  
Jaap Goudsmit

ABSTRACT To study the evolutionary history of Papio cynocephalus endogenous retrovirus (PcEV), we analyzed the distribution and genetic characteristics of PcEV among 17 different species of primates. The viral pol-env and long terminal repeat and untranslated region (LTR-UTR) sequences could be recovered from all Old World species of the papionin tribe, which includes baboons, macaques, geladas, and mangabeys, but not from the New World monkeys and hominoids we tested. The Old World genera Cercopithecus andMiopithecus hosted either a PcEV variant with an incomplete genome or a virus with substantial mismatches in the LTR-UTR. A complete PcEV was found in the genome of Colobus guereza—but not in Colobus badius—with a copy number of 44 to 61 per diploid genome, comparable to that seen in papionins, and with a sequence most closely related to a virus of the papionin tribe. Analysis of evolutionary distances among PcEV sequences for synonymous and nonsynonymous sites indicated that purifying selection was operational during PcEV evolution. Phylogenetic analysis suggested that possibly two subtypes of PcEV entered the germ line of a common ancestor of the papionins and subsequently coevolved with their hosts. One strain of PcEV was apparently transmitted from a papionin ancestor to an ancestor of the central African lowland C. guereza.


mBio ◽  
2016 ◽  
Vol 7 (3) ◽  
Author(s):  
Caroline Chénard ◽  
Jennifer F. Wirth ◽  
Curtis A. Suttle

ABSTRACT  Here we present the first genomic characterization of viruses infectingNostoc, a genus of ecologically important cyanobacteria that are widespread in freshwater. Cyanophages A-1 and N-1 were isolated in the 1970s and infectNostocsp. strain PCC 7210 but remained genomically uncharacterized. Their 68,304- and 64,960-bp genomes are strikingly different from those of other sequenced cyanophages. Many putative genes that code for proteins with known functions are similar to those found in filamentous cyanobacteria, showing a long evolutionary history in their host. Cyanophage N-1 encodes a CRISPR array that is transcribed during infection and is similar to the DR5 family of CRISPRs commonly found in cyanobacteria. The presence of a host-related CRISPR array in a cyanophage suggests that the phage can transfer the CRISPR among related cyanobacteria and thereby provide resistance to infection with competing phages. Both viruses also encode a distinct DNA polymerase B that is closely related to those found in plasmids ofCyanothecesp. strain PCC 7424,Nostocsp. strain PCC 7120, andAnabaena variabilisATCC 29413. These polymerases form a distinct evolutionary group that is more closely related to DNA polymerases of proteobacteria than to those of other viruses. This suggests that the polymerase was acquired from a proteobacterium by an ancestral virus and transferred to the cyanobacterial plasmid. Many other open reading frames are similar to a prophage-like element in the genome ofNostocsp. strain PCC 7524. TheNostoccyanophages reveal a history of gene transfers between filamentous cyanobacteria and their viruses that have helped to forge the evolutionary trajectory of this previously unrecognized group of phages.IMPORTANCEFilamentous cyanobacteria belonging to the genusNostocare widespread and ecologically important in freshwater, yet little is known about the genomic content of their viruses. Here we report the first genomic analysis of cyanophages infecting filamentous freshwater cyanobacteria, revealing that their gene content is unlike that of other cyanophages. In addition to sharing many gene homologues with freshwater cyanobacteria, cyanophage N-1 encodes a CRISPR array and expresses it upon infection. Also, both viruses contain a DNA polymerase B-encoding gene with high similarity to genes found in proteobacterial plasmids of filamentous cyanobacteria. The observation that phages can acquire CRISPRs from their hosts suggests that phages can also move them among hosts, thereby conferring resistance to competing phages. The presence in these cyanophages of CRISPR and DNA polymerase B sequences, as well as a suite of other host-related genes, illustrates the long and complex evolutionary history of these viruses and their hosts.


Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

AbstractCereulide-producing members of Bacillus cereus sensu lato (B. cereus s.l.) Group III, also known as “emetic B. cereus”, possess cereulide synthetase, a plasmid-encoded, non-ribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by “emetic B. cereus” has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize Group III B. cereus s.l. genomes which possess ces (ces-positive) alongside their closely related ces-negative counterparts to (i) assess the genomic diversity encompassed by “emetic B. cereus”, and (ii) identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive Group III B. cereus s.l. genomes and the ces-negative genomes interspersed among them (n = 150), we show that “emetic B. cereus” is not clonal; rather, multiple lineages within Group III harbor cereulide-producing strains, all of which share a common ancestor incapable of producing cereulide (posterior probability [PP] 0.86-0.89). The ST 26 common ancestor was predicted to have emerged as ces-negative (PP 0.60-0.93) circa 1904 (95% highest posterior density [HPD] interval 1837.1-1957.8) and first acquired the ability to produce cereulide before 1931 (95% HPD 1893.2-1959.0). Three subsequent ces loss events within ST 26 were observed, including among isolates responsible for B. cereus s.l. toxicoinfection (i.e., “diarrheal” illness).Importance“B. cereus” is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., “emetic” syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., “diarrheal” syndrome). Here, we show that “emetic B. cereus” is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some Group III B. cereus s.l. populations to oscillate between diarrheal and emetic foodborne pathogen over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus s.l. outbreaks, as some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


2021 ◽  
Author(s):  
Haifeng Zhang ◽  
Renjie Shang ◽  
Kwantae Kim ◽  
Wei Zheng ◽  
Christopher J. Johnson ◽  
...  

The size of an animal is determined by the size of its musculoskeletal system. Myoblast fusion is an innovative mechanism that allows for multinucleated muscle fibers to compound the size and strength of individual mononucleated cells. However, the evolutionary history of the control mechanism underlying this important process is currently unknown. The phylum Chordata hosts closely related groups that span distinct myoblast fusion states: no fusion in cephalochordates, restricted fusion and multinucleation in tunicates, and extensive, obligatory fusion in vertebrates. To elucidate how these differences may have evolved, we studied the evolutionary origins and function of membrane-coalescing agents Myomaker and Myomixer in various groups of chordates. Here we report that Myomaker likely arose through gene duplication in the last common ancestor of tunicates and vertebrates, while Myomixer appears to have evolved de novo in early vertebrates. Functional tests revealed an unexpectedly complex evolutionary history of myoblast fusion in chordates. A pre-vertebrate phase of muscle multinucleation driven by Myomaker was followed by the later emergence of Myomixer that enables the highly efficient fusion system of vertebrates. Thus, our findings reveal the evolutionary origins of chordate-specific fusogens and illustrate how new genes can shape the emergence of novel morphogenetic traits and mechanisms.


2020 ◽  
Vol 59 (1) ◽  
pp. e02198-20
Author(s):  
N. Effelsberg ◽  
M. Stegger ◽  
L. Peitzmann ◽  
O. Altinok ◽  
G. W. Coombs ◽  
...  

ABSTRACTStaphylococcus aureus ST45 is a major global MRSA lineage with huge strain diversity and a high clinical impact. It is one of the most prevalent carrier lineages but also frequently causes severe invasive disease, such as bacteremia. Little is known about its evolutionary history. In this study, we used whole-genome sequencing to analyze a large collection of 451 diverse ST45 isolates from 6 continents and 26 countries. De novo-assembled genomes were used to understand genomic plasticity and to perform coalescent analyses. The ST45 population contained two distinct sublineages, which correlated with the isolates’ geographical origins. One sublineage primarily consisted of European/North American isolates, while the second sublineage primarily consisted of African and Australian isolates. Bayesian analysis predicted ST45 originated in northwestern Europe about 500 years ago. Isolation time, host, and clinical symptoms did not correlate with phylogenetic groups. Our phylogenetic analyses suggest multiple acquisitions of the SCCmec element and key virulence factors throughout the evolution of the ST45 lineage.


Quaternary ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 26
Author(s):  
Maria Palombo

Explaining the multifaceted, dynamic interactions of the manifold factors that have modelled throughout the ages the evolutionary history of the biosphere is undoubtedly a fascinating and challenging task that has been intriguing palaeontologists, biologists and ecologists for decades, in a never-ending pursuit of the causal factors that controlled the evolutionary dynamics of the Earth’s ecosystems throughout deep and Quaternary time. [...]


mBio ◽  
2020 ◽  
Vol 11 (4) ◽  
Author(s):  
Laura M. Carroll ◽  
Martin Wiedmann

ABSTRACT Cereulide-producing members of Bacillus cereus sensu lato group III (also known as emetic B. cereus) possess cereulide synthetase, a plasmid-encoded, nonribosomal peptide synthetase encoded by the ces gene cluster. Despite the documented risks that cereulide-producing strains pose to public health, the level of genomic diversity encompassed by emetic B. cereus has never been evaluated at a whole-genome scale. Here, we employ a phylogenomic approach to characterize group III B. cereus sensu lato genomes which possess ces (ces positive) alongside their closely related, ces-negative counterparts (i) to assess the genomic diversity encompassed by emetic B. cereus and (ii) to identify potential ces loss and/or gain events within the evolutionary history of the high-risk and medically relevant sequence type (ST) 26 lineage often associated with emetic foodborne illness. Using all publicly available ces-positive group III B. cereus sensu lato genomes and the ces-negative genomes interspersed among them (n = 159), we show that emetic B. cereus is not clonal; rather, multiple lineages within group III harbor cereulide-producing strains, all of which share an ancestor incapable of producing cereulide (posterior probability = 0.86 to 0.89). Members of ST 26 share an ancestor that existed circa 1748 (95% highest posterior density [HPD] interval = 1246.89 to 1915.64) and first acquired the ability to produce cereulide before 1876 (95% HPD = 1641.43 to 1946.70). Within ST 26 alone, two subsequent ces gain events were observed, as well as three ces loss events, including among isolates responsible for B. cereus sensu lato toxicoinfection (i.e., “diarrheal” illness). IMPORTANCE B. cereus is responsible for thousands of cases of foodborne disease each year worldwide, causing two distinct forms of illness: (i) intoxication via cereulide (i.e., emetic syndrome) or (ii) toxicoinfection via multiple enterotoxins (i.e., diarrheal syndrome). Here, we show that emetic B. cereus is not a clonal, homogenous unit that resulted from a single cereulide synthetase gain event followed by subsequent proliferation; rather, cereulide synthetase acquisition and loss is a dynamic, ongoing process that occurs across lineages, allowing some group III B. cereus sensu lato populations to oscillate between diarrheal and emetic foodborne pathogens over the course of their evolutionary histories. We also highlight the care that must be taken when selecting a reference genome for whole-genome sequencing-based investigation of emetic B. cereus sensu lato outbreaks, since some reference genome selections can lead to a confounding loss of resolution and potentially hinder epidemiological investigations.


Sign in / Sign up

Export Citation Format

Share Document