scholarly journals Towards a systematic characterization of protein complex function: a natural language processing and machine-learning framework

2021 ◽  
Author(s):  
Varun S. Sharma ◽  
Andrea Fossati ◽  
Rodolfo Ciuffa ◽  
Marija Buljan ◽  
Evan G. Williams ◽  
...  

SummaryIt is a general assumption of molecular biology that the ensemble of expressed molecules, their activities and interactions determine biological processes, cellular states and phenotypes. Quantitative abundance of transcripts, proteins and metabolites are now routinely measured with considerable depth via an array of “OMICS” technologies, and recently a number of methods have also been introduced for the parallel analysis of the abundance, subunit composition and cell state specific changes of protein complexes. In comparison to the measurement of the molecular entities in a cell, the determination of their function remains experimentally challenging and labor-intensive. This holds particularly true for determining the function of protein complexes, which constitute the core functional assemblies of the cell. Therefore, the tremendous progress in multi-layer molecular profiling has been slow to translate into increased functional understanding of biological processes, cellular states and phenotypes. In this study we describe PCfun, a computational framework for the systematic annotation of protein complex function using Gene Ontology (GO) terms. This work is built upon the use of word embedding— natural language text embedded into continuous vector space that preserves semantic relationships— generated from the machine reading of 1 million open access PubMed Central articles. PCfun leverages the embedding for rapid annotation of protein complex function by integrating two approaches: (1) an unsupervised approach that obtains the nearest neighbor (NN) GO term word vectors for a protein complex query vector, and (2) a supervised approach using Random Forest (RF) models trained specifically for recovering the GO terms of protein complex queries described in the CORUM protein complex database. PCfun consolidates both approaches by performing the statistical test for the enrichment of the top NN GO terms within the child terms of the predicted GO terms by RF models. Thus, PCfun amalgamates information learned from the gold-standard protein-complex database, CORUM, with the unbiased predictions obtained directly from the word embedding, thereby enabling PCfun to identify the potential functions of putative protein complexes. The documentation and examples of the PCfun package are available at https://github.com/sharmavaruns/PCfun. We anticipate that PCfun will serve as a useful tool and novel paradigm for the large-scale characterization of protein complex function.

2021 ◽  
pp. 1-13
Author(s):  
Lamiae Benhayoun ◽  
Daniel Lang

BACKGROUND: The renewed advent of Artificial Intelligence (AI) is inducing profound changes in the classic categories of technology professions and is creating the need for new specific skills. OBJECTIVE: Identify the gaps in terms of skills between academic training on AI in French engineering and Business Schools, and the requirements of the labour market. METHOD: Extraction of AI training contents from the schools’ websites and scraping of a job advertisements’ website. Then, analysis based on a text mining approach with a Python code for Natural Language Processing. RESULTS: Categorization of occupations related to AI. Characterization of three classes of skills for the AI market: Technical, Soft and Interdisciplinary. Skills’ gaps concern some professional certifications and the mastery of specific tools, research abilities, and awareness of ethical and regulatory dimensions of AI. CONCLUSIONS: A deep analysis using algorithms for Natural Language Processing. Results that provide a better understanding of the AI capability components at the individual and the organizational levels. A study that can help shape educational programs to respond to the AI market requirements.


2021 ◽  
Author(s):  
Xinxu Shen ◽  
Troy Houser ◽  
David Victor Smith ◽  
Vishnu P. Murty

The use of naturalistic stimuli, such as narrative movies, is gaining popularity in many fields, characterizing memory, affect, and decision-making. Narrative recall paradigms are often used to capture the complexity and richness of memory for naturalistic events. However, scoring narrative recalls is time-consuming and prone to human biases. Here, we show the validity and reliability of using a natural language processing tool, the Universal Sentence Encoder (USE), to automatically score narrative recall. We compared the reliability in scoring made between two independent raters (i.e., hand-scored) and between our automated algorithm and individual raters (i.e., automated) on trial-unique, video clips of magic tricks. Study 1 showed that our automated segmentation approaches yielded high reliability and reflected measures yielded by hand-scoring, and further that the results using USE outperformed another popular natural language processing tool, GloVe. In study two, we tested whether our automated approach remained valid when testing individual’s varying on clinically-relevant dimensions that influence episodic memory, age and anxiety. We found that our automated approach was equally reliable across both age groups and anxiety groups, which shows the efficacy of our approach to assess narrative recall in large-scale individual difference analysis. In sum, these findings suggested that machine learning approaches implementing USE are a promising tool for scoring large-scale narrative recalls and perform individual difference analysis for research using naturalistic stimuli.


2018 ◽  
Author(s):  
Valerie Wood ◽  
Antonia Lock ◽  
Midori A. Harris ◽  
Kim Rutherford ◽  
Jürg Bähler ◽  
...  

AbstractThe first decade of genome sequencing stimulated an explosion in the characterization of unknown proteins. More recently, the pace of functional discovery has slowed, leaving around 20% of the proteins even in well-studied model organisms without informative descriptions of their biological roles. Remarkably, many uncharacterized proteins are conserved from yeasts to human, suggesting that they contribute to fundamental biological processes. To fully understand biological systems in health and disease, we need to account for every part of the system. Unstudied proteins thus represent a collective blind spot that limits the progress of both basic and applied biosciences.We use a simple yet powerful metric based on Gene Ontology (GO) biological process terms to define characterized and uncharacterized proteins for human, budding yeast, and fission yeast. We then identify a set of conserved but unstudied proteins in S. pombe, and classify them based on a combination of orthogonal attributes determined by large-scale experimental and comparative methods. Finally, we explore possible reasons why these proteins remain neglected, and propose courses of action to raise their profile and thereby reap the benefits of completing the catalog of proteins’ biological roles.


10.29007/pc58 ◽  
2018 ◽  
Author(s):  
Julia Lavid ◽  
Marta Carretero ◽  
Juan Rafael Zamorano

In this paper we set forth an annotation model for dynamic modality in English and Spanish, given its relevance not only for contrastive linguistic purposes, but also for its impact on practical annotation tasks in the Natural Language Processing (NLP) community. An annotation scheme is proposed, which captures both the functional-semantic meanings and the language-specific realisations of dynamic meanings in both languages. The scheme is validated through a reliability study performed on a randomly selected set of one hundred and twenty sentences from the MULTINOT corpus, resulting in a high degree of inter-annotator agreement. We discuss our main findings and give attention to the difficult cases as they are currently being used to develop detailed guidelines for the large-scale annotation of dynamic modality in English and Spanish.


2020 ◽  
Author(s):  
Joshua Conrad Jackson ◽  
Joseph Watts ◽  
Johann-Mattis List ◽  
Ryan Drabble ◽  
Kristen Lindquist

Humans have been using language for thousands of years, but psychologists seldom consider what natural language can tell us about the mind. Here we propose that language offers a unique window into human cognition. After briefly summarizing the legacy of language analyses in psychological science, we show how methodological advances have made these analyses more feasible and insightful than ever before. In particular, we describe how two forms of language analysis—comparative linguistics and natural language processing—are already contributing to how we understand emotion, creativity, and religion, and overcoming methodological obstacles related to statistical power and culturally diverse samples. We summarize resources for learning both of these methods, and highlight the best way to combine language analysis techniques with behavioral paradigms. Applying language analysis to large-scale and cross-cultural datasets promises to provide major breakthroughs in psychological science.


Author(s):  
Kaan Ant ◽  
Ugur Sogukpinar ◽  
Mehmet Fatif Amasyali

The use of databases those containing semantic relationships between words is becoming increasingly widespread in order to make natural language processing work more effective. Instead of the word-bag approach, the suggested semantic spaces give the distances between words, but they do not express the relation types. In this study, it is shown how semantic spaces can be used to find the type of relationship and it is compared with the template method. According to the results obtained on a very large scale, while is_a and opposite are more successful for semantic spaces for relations, the approach of templates is more successful in the relation types at_location, made_of and non relational.


2019 ◽  
Author(s):  
Wojciech Michalak ◽  
Vasileios Tsiamis ◽  
Veit Schwämmle ◽  
Adelina Rogowska-Wrzesińska

AbstractWe have developed ComplexBrowser, an open source, online platform for supervised analysis of quantitative proteomics data that focuses on protein complexes. The software uses information from CORUM and Complex Portal databases to identify protein complex components. Based on the expression changes of individual complex subunits across the proteomics experiment it calculates Complex Fold Change (CFC) factor that characterises the overall protein complex expression trend and the level of subunit co-regulation. Thus up- and down-regulated complexes can be identified. It provides interactive visualisation of protein complexes composition and expression for exploratory analysis. It also incorporates a quality control step that includes normalisation and statistical analysis based on Limma test. ComplexBrowser performance was tested on two previously published proteomics studies identifying changes in protein expression in human adenocarcinoma tissue and during activation of mouse T-cells. The analysis revealed 1519 and 332 protein complexes, of which 233 and 41 were found co-ordinately regulated in the respective studies. The adopted approach provided evidence for a shift to glucose-based metabolism and high proliferation in adenocarcinoma tissues and identification of chromatin remodelling complexes involved in mouse T-cell activation. The results correlate with the original interpretation of the experiments and also provide novel biological details about protein complexes affected. ComplexBrowser is, to our knowledge, the first tool to automate quantitative protein complex analysis for high-throughput studies, providing insights into protein complex regulation within minutes of analysis.A fully functional demo version of ComplexBrowser v1.0 is available online via http://computproteomics.bmb.sdu.dk/Apps/ComplexBrowser/The source code can be downloaded from: https://bitbucket.org/michalakw/complexbrowserHighlightsAutomated analysis of protein complexes in proteomics experimentsQuantitative measure of the coordinated changes in protein complex componentsInteractive visualisations for exploratory analysis of proteomics resultsIn briefComplexBrowser is capable of identifying protein complexes in datasets obtained from large scale quantitative proteomics experiments. It provides, in the form of the CFC factor, a quantitative measure of the coordinated changes in complex components. This facilitates assessing the overall trends in the processes governed by the identified protein complexes providing a new and complementary way of interpreting proteomics experiments.


2019 ◽  
Vol 6 ◽  
Author(s):  
Catharina Marie Stille ◽  
Trevor Bekolay ◽  
Peter Blouw ◽  
Bernd J. Kröger

Sign in / Sign up

Export Citation Format

Share Document