scholarly journals Factors influencing maternal microchimerism throughout infancy and its impact on infant T cell immunity

2021 ◽  
Author(s):  
Christina Balle ◽  
Agano Kiravu ◽  
Angela Hoffmann ◽  
Anna-Ursula Happel ◽  
Sami B. Kanaan ◽  
...  

AbstractDeterminants of the acqusition and maintenance of maternal microchimerism (MMc) during infancy and the impact of MMc on infant immune responses are unknown. We examined factors which influence MMc detection and level across infancy and the effect of MMc on T cell responses to BCG vaccination in a cohort of HIV exposed, uninfected and HIV unexposed infants in South Africa. MMc was measured in whole blood from 58 infants using a panel of quantitative PCR assays at day one and 7, 15, and 36 weeks of life. Infants received BCG at birth, and select whole blood samples from infancy were stimulated in vitro with BCG and assessed for polyfunctional CD4+ T cell responses. MMc was present in most infants across infancy at levels ranging from 1-1,193/100,000 genomic equivalents and was positively impacted by absence of maternal HIV, exclusive breastfeeding, and female sex, emphasizing that both maternal and infant factors may shape the maternal graft. Initiation of maternal antiretroviral therapy prior to pregnancy was associated with partial restoration of MMc in HIV exposed, uninfected infants. Birth MMc was associated with an improved polyfunctional CD4+ T cell response to BCG, suggesting that MMc may functionally impact infant immunity.

Author(s):  
Ziwei Li ◽  
Jing Liu ◽  
Hui Deng ◽  
Xuecheng Yang ◽  
Hua Wang ◽  
...  

ABSTRACTAn unaddressed key question in the current coronavirus disease 2019 (COVID-19) pandemic is the duration of immunity for which specific T cell responses against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are an indispensable element. Being situated in Wuhan where the pandemic initiated enables us to conduct the longest analyses of memory T cell responses against SARS-CoV-2 in COVID-19 convalescent individuals (CIs). Magnitude and breadth of SARS-CoV-2 memory CD4 and CD8 T cell responses were heterogeneous between patients but robust responses could be detected up to 9 months post disease onset in most CIs. Loss of memory CD4 and CD8 T cell responses were observed in only 16.13% and 25.81% of CIs, respectively. Thus, the overall magnitude and breadth of memory CD4 and CD8 T cell responses were quite stable and not inversely correlated with the time from disease onset. Interestingly, the only significant decrease in the response was found for memory CD4 T cells in the first 6-month post COVID-19 disease onset. Longitudinal analyses revealed that the kinetics of SARS-CoV-2 memory CD4 and CD8 T cell responses were quite heterogenous between patients. Loss of memory CD4 T cell responses was observed more frequently in asymptomatic cases than after symptomatic COVID-19. Interestingly, the few CIs in which SARS-CoV-2-specific IgG responses disappeared showed more durable memory CD4 T cell responses than CIs who remained IgG-positive for month. Collectively, we provide the first comprehensive characterization of the long-term memory T cell response in CIs, suggesting that SARS-CoV-2-specific T cell immunity is long-lasting in the majority of individuals.


Author(s):  
Ian Shannon ◽  
Chantelle L White ◽  
Hongmei Yang ◽  
Jennifer L Nayak

Abstract Background Early childhood influenza infections imprint influenza-specific immune memory, with most studies evaluating antibody specificity. In this study, we examined how infection versus inactivated influenza vaccination (IIV) establish pediatric CD4 T-cell mediated immunity to influenza and whether this poises the immune system to respond differently to IIV the following year. Methods We tracked influenza-specific CD4 T-cell responses in 16 H3N2 infected and 28 IIV immunized children following both initial exposure and after cohorts were revaccinated with IIV the following fall. PBMCs were stimulated with peptide pools encompassing the translated regions of the H3 HA and NP proteins and were then stained to assess CD4 T-cell specificity and function. Results Compared to IIV, infection primed a greater magnitude CD4 T-cell response specific for the infecting HA and NP proteins, with more robust NP-specific immunity persisting through year 2. Post infection, CD4 T cells preferentially produced combinations of cytokines that included interferon-γ. Interestingly, age-specific patterns in CD4 T-cell reactivity demonstrated the impact of multiple influenza exposures over time. Conclusions These data indicate that infection and vaccination differentially prime influenza-specific CD4 T-cell responses in early childhood, with these differences contributing to the lasting immunologic imprinting established following early influenza infection. Clinical Trials Registration NCT02559505.


2010 ◽  
Vol 78 (10) ◽  
pp. 4356-4362 ◽  
Author(s):  
Julie A. Musson ◽  
Rebecca Ingram ◽  
Guillaume Durand ◽  
Stephanie Ascough ◽  
Emma L. Waters ◽  
...  

ABSTRACT Yersinia pestis is the causative agent of plague, a rapidly fatal infectious disease that has not been eradicated worldwide. The capsular Caf1 protein of Y. pestis is a protective antigen under development as a recombinant vaccine. However, little is known about the specificity of human T-cell responses for Caf1. We characterized CD4 T-cell epitopes of Caf1 in “humanized” HLA-DR1 transgenic mice lacking endogenous major histocompatibility complex class II molecules. Mice were immunized with Caf1 or each of a complete set of overlapping synthetic peptides, and CD4 T-cell immunity was measured with respect to proliferative and gamma interferon T-cell responses and recognition by a panel of T-cell hybridomas, as well as direct determination of binding affinities of Caf1 peptides to purified HLA-DR molecules. Although a number of DR1-restricted epitopes were identified following Caf1 immunization, the response was biased toward a single immunodominant epitope near the C terminus of Caf1. In addition, potential promiscuous epitopes, including the immunodominant epitope, were identified by their ability to bind multiple common HLA alleles, with implications for the generation of multivalent vaccines against plague for use in humans.


2021 ◽  
Vol 118 (16) ◽  
pp. e2024171118
Author(s):  
Wei Yin ◽  
Yihong Li ◽  
Yan Song ◽  
Jiarui Zhang ◽  
Chao Wu ◽  
...  

Macrophages are the key regulator of T-cell responses depending on their activation state. C-C motif chemokine receptor-like 2 (CCRL2), a nonsignaling atypical receptor originally cloned from LPS-activated macrophages, has recently been shown to regulate immune responses under several inflammatory conditions. However, whether CCRL2 influences macrophage function and regulates tumor immunity remains unknown. Here, we found that tumoral CCRL2 expression is a predictive indicator of robust antitumor T-cell responses in human cancers. CCRL2 is selectively expressed in tumor-associated macrophages (TAM) with immunostimulatory phenotype in humans and mice. Conditioned media from tumor cells could induce CCRL2 expression in macrophages primarily via TLR4, which is negated by immunosuppressive factors. Ccrl2−/− mice exhibit accelerated melanoma growth and impaired antitumor immunity characterized by significant reductions in immunostimulatory macrophages and T-cell responses in tumor. Depletion of CD8+ T cells or macrophages eliminates the difference in tumor growth between WT and Ccrl2−/− mice. Moreover, CCRL2 deficiency impairs immunogenic activation of macrophages, resulting in attenuated antitumor T-cell responses and aggravated tumor growth in a coinjection tumor model. Mechanically, CCRL2 interacts with TLR4 on the cell surface to retain membrane TLR4 expression and further enhance its downstream Myd88-NF-κB inflammatory signaling in macrophages. Similarly, Tlr4−/− mice exhibit reduced CCRL2 expression in TAM and accelerated melanoma growth. Collectively, our study reveals a functional role of CCRL2 in activating immunostimulatory macrophages, thereby potentiating antitumor T-cell response and tumor rejection, and suggests CCLR2 as a potential biomarker candidate and therapeutic target for cancer immunotherapy.


2021 ◽  
pp. annrheumdis-2021-220626
Author(s):  
Maria Prendecki ◽  
Candice Clarke ◽  
Helena Edwards ◽  
Stacey McIntyre ◽  
Paige Mortimer ◽  
...  

ObjectiveThere is an urgent need to assess the impact of immunosuppressive therapies on the immunogenicity and efficacy of SARS-CoV-2 vaccination.MethodsSerological and T-cell ELISpot assays were used to assess the response to first-dose and second-dose SARS-CoV-2 vaccine (with either BNT162b2 mRNA or ChAdOx1 nCoV-19 vaccines) in 140 participants receiving immunosuppression for autoimmune rheumatic and glomerular diseases.ResultsFollowing first-dose vaccine, 28.6% (34/119) of infection-naïve participants seroconverted and 26.0% (13/50) had detectable T-cell responses to SARS-CoV-2. Immune responses were augmented by second-dose vaccine, increasing seroconversion and T-cell response rates to 59.3% (54/91) and 82.6% (38/46), respectively. B-cell depletion at the time of vaccination was associated with failure to seroconvert, and tacrolimus therapy was associated with diminished T-cell responses. Reassuringly, only 8.7% of infection-naïve patients had neither antibody nor T-cell responses detected following second-dose vaccine. In patients with evidence of prior SARS-CoV-2 infection (19/140), all mounted high-titre antibody responses after first-dose vaccine, regardless of immunosuppressive therapy.ConclusionSARS-CoV-2 vaccines are immunogenic in patients receiving immunosuppression, when assessed by a combination of serology and cell-based assays, although the response is impaired compared with healthy individuals. B-cell depletion following rituximab impairs serological responses, but T-cell responses are preserved in this group. We suggest that repeat vaccine doses for serological non-responders should be investigated as means to induce more robust immunological response.


2018 ◽  
Vol 19 (6) ◽  
pp. 437-446 ◽  
Author(s):  
Erica C. Lorenzo ◽  
Jenna M. Bartley ◽  
Laura Haynes

2006 ◽  
Vol 80 (19) ◽  
pp. 9779-9788 ◽  
Author(s):  
Helen Horton ◽  
Colin Havenar-Daughton ◽  
Deborah Lee ◽  
Erin Moore ◽  
Jianhong Cao ◽  
...  

ABSTRACT Candidate human immunodeficiency virus type 1 (HIV-1) vaccines designed to elicit T-cell immunity in HIV-1-uninfected persons are under investigation in phase I to III clinical trials. Little is known about how these vaccines impact the immunologic response postinfection in persons who break through despite vaccination. Here, we describe the first comprehensive characterization of HIV-specific T-cell immunity in vaccine study participants following breakthrough HIV-1 infection in comparison to 16 nonvaccinated subjects with primary HIV-1 infection. Whereas none of the 16 breakthrough infections possessed vaccine-induced HIV-1-specific T-cell responses preinfection, 85% of vaccinees and 86% of nonvaccinees with primary HIV-1 infection developed HIV-specific T-cell responses postinfection. Breakthrough subjects' T cells recognized 43 unique HIV-1 T-cell epitopes, of which 8 are newly described, and 25% were present in the vaccine. The frequencies of gamma interferon (IFN-γ)-secreting cells recognizing epitopes within gene products that were and were not encoded by the vaccine were not different (P = 0.64), which suggests that responses were not anamnestic. Epitopes within Nef and Gag proteins were the most commonly recognized in both vaccinated and nonvaccinated infected subjects. One individual controlled viral replication without antiretroviral therapy and, notably, mounted a novel HIV-specific HLA-C14-restricted Gag LYNTVATL-specific T-cell response. Longitudinally, HIV-specific T cells in this individual were able to secrete IFN-γ and tumor necrosis factor alpha, as well as proliferate and degranulate in response to their cognate antigenic peptides up to 5 years postinfection. In conclusion, a vaccinee's ability to mount an HIV-specific T-cell response postinfection is not compromised by previous immunization, since the CD8+ T-cell responses postinfection are similar to those seen in vaccine-naïve individuals. Finding an individual who is controlling infection highlights the importance of comprehensive studies of breakthrough infections in vaccine trials to determine whether host genetics/immune responses and/or viral characteristics are responsible for controlling viral replication.


2017 ◽  
Vol 91 (24) ◽  
Author(s):  
Alba Grifoni ◽  
John Pham ◽  
John Sidney ◽  
Patrick H. O'Rourke ◽  
Sinu Paul ◽  
...  

ABSTRACT While progress has been made in characterizing humoral immunity to Zika virus (ZIKV) in humans, little is known regarding the corresponding T cell responses to ZIKV. Here, we investigate the kinetics and viral epitopes targeted by T cells responding to ZIKV and address the critical question of whether preexisting dengue virus (DENV) T cell immunity modulates these responses. We find that memory T cell responses elicited by prior infection with DENV or vaccination with tetravalent dengue attenuated vaccines (TDLAV) recognize ZIKV-derived peptides. This cross-reactivity is explained by the sequence similarity of the two viruses, as the ZIKV peptides recognized by DENV-elicited memory T cells are identical or highly conserved in DENV and ZIKV. DENV exposure prior to ZIKV infection also influences the timing and magnitude of the T cell response. ZIKV-reactive T cells in the acute phase of infection are detected earlier and in greater magnitude in DENV-immune patients. Conversely, the frequency of ZIKV-reactive T cells continues to rise in the convalescent phase in DENV-naive donors but declines in DENV-preexposed donors, compatible with more efficient control of ZIKV replication and/or clearance of ZIKV antigen. The quality of responses is also influenced by previous DENV exposure, and ZIKV-specific CD8 T cells from DENV-preexposed donors selectively upregulated granzyme B and PD1, unlike DENV-naive donors. Finally, we discovered that ZIKV structural proteins (E, prM, and C) are major targets of both the CD4 and CD8 T cell responses, whereas DENV T cell epitopes are found primarily in nonstructural proteins. IMPORTANCE The issue of potential ZIKV and DENV cross-reactivity and how preexisting DENV T cell immunity modulates Zika T cell responses is of great relevance, as the two viruses often cocirculate and Zika virus has been spreading in geographical regions where DENV is endemic or hyperendemic. Our data show that memory T cell responses elicited by prior infection with DENV recognize ZIKV-derived peptides and that DENV exposure prior to ZIKV infection influences the timing, magnitude, and quality of the T cell response. Additionally, we show that ZIKV-specific responses target different proteins than DENV-specific responses, pointing toward important implications for vaccine design against this global threat.


2018 ◽  
Author(s):  
Miguel J. Rodo ◽  
Virginie Rozot ◽  
Elisa Nemes ◽  
One Dintwe ◽  
Mark Hatherill ◽  
...  

AbstractEradication of tuberculosis (TB), the world’s leading cause of death due to infectious disease, requires a highly efficacious TB vaccine. Many TB vaccine candidates are in preclinical and clinical development but only a few can be advanced to large-scale efficacy trials due to limited global resources. We aimed to perform a statistically rigorous comparison of the antigen-specific T cell responses induced by six novel TB vaccine candidates and the only licensed TB vaccine, Bacillus Calmette-Guérin (BCG). We propose that the antigen-specific immune response induced by such vaccines provides an objective, data-driven basis for prioritisation of vaccine candidates for efficacy testing. We analyzed frequencies of antigen-specific CD4 and CD8 T cells expressing IFNγ, IL-2, TNF and/or IL-17 from adolescents or adults, with or without Mycobacterium tuberculosis (M.tb) infection, who received MVA85A, AERAS-402, H1:IC31, H56:IC31, M72/AS01E, ID93+GLA-SE or BCG. Two key response characteristics were analyzed, namely response magnitude and cytokine co-expression profile of the memory T cell response that persisted above the pre-vaccination response to the final study visit in each trial. All vaccines preferentially induced antigen-specific CD4 T cell responses expressing Th1 cytokines; levels of IL-17-expressing cells were low or not detected. In M.tb-uninfected and ‐infected individuals, M72/AS01E induced higher memory Th1 cytokine-expressing CD4 T cell responses than other novel vaccine candidates. Cytokine co-expression profiles of memory CD4 T cells induced by different novel vaccine candidates were alike. Our study suggests that the T cell response feature which most differentiated between the TB vaccine candidates was response magnitude, whilst functional profiles suggested a lack of response diversity. Since M72/AS01E induced the highest memory CD4 T cell response it demonstrated the best vaccine take. In the absence of immunological correlates of protection the likelihood of finding a protective vaccine by empirical testing of candidates may be increased by the addition of candidates that induce distinct immune characteristics.Author summaryTuberculosis (TB) causes more deaths than any other single infectious disease, and a new, improved vaccine is needed to control the epidemic. Many new TB vaccine candidates are in clinical development, but only one or two can be advanced to expensive efficacy trials. In this study, we compared magnitude and functional attributes of memory T cell responses induced in recently conducted clinical trials by six TB vaccine candidates, as well as BCG. The results suggest that these vaccines induced CD4 and CD8 T cell responses with similar functional attributes, but that one vaccine, M72/AS01E, induced the largest responses. This finding may indicate a lack of diversity in T cell responses induced by different TB vaccine candidates. A repertoire of vaccine candidates that induces more diverse immune response characteristics may increase the chances of finding a protective vaccine against TB.


Sign in / Sign up

Export Citation Format

Share Document