scholarly journals Identification of in vivo CFTR conformations during biogenesis and upon misfolding by covalent protein painting (CPP)

2021 ◽  
Author(s):  
Sandra Pankow ◽  
Casimir Bamberger ◽  
Salvador Martínez-Bartolomé ◽  
Sung-Kyu Park ◽  
John R. Yates

AbstractIn vivo characterization of protein structures or protein structural changes after perturbation is a major challenge. Therefore, experiments to characterize protein structures are typically performed in vitro and with highly purified proteins or protein complexes. Using a novel low-resolution method named Covalent Protein Painting (CPP) that allows the characterization of protein conformations in vivo, we are the first to report how an ion channel, the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), is conformationally changed during biogenesis and channel opening in the cell. Our study led to the identification of a novel opening mechanism for CFTR by revealing that the interaction of the intracellular loop 2 (ICL2) with the nucleotide binding domain 2 (NDB2) of CFTR is needed for channel gating, and this interaction occurs concomitantly with changes to the narrow part of the pore and the walker A lysine in NBD1. However, the ICL2:NBD2 interface, which forms a “ball-in-a-socket” motif, is uncoupled during biogenesis, likely to prevent inadvertent channel activation during transport. In particular, solvent accessibility of lysine 273 (K273) in ICL2 changes with the opening and closing of the channel. Mutation of K273 severely impaired CFTR biogenesis and led to accumulation of CFTR in the Golgi and TGN. CPP further revealed that, even upon treatment with current approved drugs or at permissive temperature, the uncoupled state of ICL2 is a prominent feature of the misfolded CFTR mutants ΔF508 and N1303K that cause Cystic Fibrosis (CF), which suggests that stabilization of this interface could produce a more efficient CF drug. CPP is able to characterize a protein in its native environment and measure the effect of complex PTMs and protein interactions on protein structure, making it broadly applicable and invaluable for the development of new therapies.

Author(s):  
Chitra Joshi ◽  
Siddharth Gautam

TS14, a Cysticercosis cellulosae derived protein, has been exploited for immunodiagnosis of cysticercosis in humans and pigs. However, the information on structure, function, stability and immunogenicity of TS14 derived from different isolates is primarily lacking. The present study deals with in-silico characterization of six TS14 isolates. High thermostability and an isoelectric point of 9.41 were recorded. Based on N-terminal amino acid residues, high resistance to intracellular proteases with extended in-vivo and in-vitro half-lives was predicted. TS14 is foreseen as a secretory protein with a signal peptide and an extracellular localization. Structural analysis of TS14 exhibited the dominance of helices in the secondary structure (92% coverage) with majority of residues showing high and medium solvent accessibility. High lysine content and presence of multiple nucleotide binding sites in TS14 suggests interaction with RNA/DNA and a role in their metabolism. Immunogenic profiling predicted presence of four distinct B-cell epitopes. Mutational analysis based on the single amino acid substitutions among six TS14 isolates demonstrated minor variations in structural stability; however, all the substitutions were well tolerated. Moreover, all the isolates revealed almost identical immunogenic profile with an equivocal potential to elicit the antibody-mediated immune response.


mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Vincent Tu ◽  
Tadakimi Tomita ◽  
Tatsuki Sugi ◽  
Joshua Mayoral ◽  
Bing Han ◽  
...  

ABSTRACT A characteristic of the latent cyst stage of Toxoplasma gondii is a thick cyst wall that forms underneath the membrane of the bradyzoite vacuole. Previously, our laboratory group published a proteomic analysis of purified in vitro cyst wall fragments that identified an inventory of cyst wall components. To further refine our understanding of the composition of the cyst wall, several cyst wall proteins were tagged with a promiscuous biotin ligase (BirA*), and their interacting partners were screened by streptavidin affinity purification. Within the cyst wall pulldowns, previously described cyst wall proteins, dense granule proteins, and uncharacterized hypothetical proteins were identified. Several of the newly identified hypothetical proteins were validated to be novel components of the cyst wall and tagged with BirA* to expand the model of the cyst wall interactome. Community detection of the cyst wall interactome model revealed three distinct clusters: a dense granule, a cyst matrix, and a cyst wall cluster. Characterization of several of the identified cyst wall proteins using genetic strategies revealed that MCP3 affects in vivo cyst sizes. This study provides a model of the potential protein interactions within the cyst wall and the groundwork to understand cyst wall formation. IMPORTANCE A model of the cyst wall interactome was constructed using proteins identified through BioID. The proteins within this cyst wall interactome model encompass several proteins identified in a prior characterization of the cyst wall proteome. This model provides a more comprehensive understanding of the composition of the cyst wall and may lead to insights on how the cyst wall is formed.


2012 ◽  
Vol 448 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Jonas Boehringer ◽  
Christiane Riedinger ◽  
Konstantinos Paraskevopoulos ◽  
Eachan O. D. Johnson ◽  
Edward D. Lowe ◽  
...  

The ubiquitin–proteasome system targets selected proteins for degradation by the 26S proteasome. Rpn12 is an essential component of the 19S regulatory particle and plays a role in recruiting the extrinsic ubiquitin receptor Rpn10. In the present paper we report the crystal structure of Rpn12, a proteasomal PCI-domain-containing protein. The structure helps to define a core structural motif for the PCI domain and identifies potential sites through which Rpn12 might form protein–protein interactions. We demonstrate that mutating residues at one of these sites impairs Rpn12 binding to Rpn10 in vitro and reduces Rpn10 incorporation into proteasomes in vivo.


1990 ◽  
Vol 2 (3) ◽  
pp. 207-214 ◽  
Author(s):  
W L McKendree ◽  
A L Paul ◽  
A J DeLisle ◽  
R J Ferl

2009 ◽  
Vol 191 (20) ◽  
pp. 6329-6334 ◽  
Author(s):  
Megan L. Boulette ◽  
Patricia J. Baynham ◽  
Peter A. Jorth ◽  
Irena Kukavica-Ibrulj ◽  
Aissa Longoria ◽  
...  

ABSTRACT The opportunistic pathogen Pseudomonas aeruginosa causes a variety of infections in immunocompromised individuals, including individuals with the heritable disease cystic fibrosis. Like the carbon sources metabolized by many disease-causing bacteria, the carbon sources metabolized by P. aeruginosa at the host infection site are unknown. We recently reported that l-alanine is a preferred carbon source for P. aeruginosa and that two genes potentially involved in alanine catabolism (dadA and dadX) are induced during in vivo growth in the rat peritoneum and during in vitro growth in sputum (mucus) collected from the lungs of individuals with cystic fibrosis. The goals of this study were to characterize factors required for alanine catabolism in P. aeruginosa and to assess the importance of these factors for in vivo growth. Our results reveal that dadA and dadX are arranged in an operon and are required for catabolism of l-alanine. The dad operon is inducible by l-alanine, d-alanine, and l-valine, and induction is dependent on the transcriptional regulator Lrp. Finally, we show that a mutant unable to catabolize dl-alanine displays decreased competitiveness in a rat lung model of infection.


1990 ◽  
Vol 2 (3) ◽  
pp. 207
Author(s):  
William L. McKendree ◽  
Anna-Lisa Paul ◽  
Alice J. DeLisle ◽  
Robert J. Ferl

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Isseki Yu ◽  
Takaharu Mori ◽  
Tadashi Ando ◽  
Ryuhei Harada ◽  
Jaewoon Jung ◽  
...  

Biological macromolecules function in highly crowded cellular environments. The structure and dynamics of proteins and nucleic acids are well characterized in vitro, but in vivo crowding effects remain unclear. Using molecular dynamics simulations of a comprehensive atomistic model cytoplasm we found that protein-protein interactions may destabilize native protein structures, whereas metabolite interactions may induce more compact states due to electrostatic screening. Protein-protein interactions also resulted in significant variations in reduced macromolecular diffusion under crowded conditions, while metabolites exhibited significant two-dimensional surface diffusion and altered protein-ligand binding that may reduce the effective concentration of metabolites and ligands in vivo. Metabolic enzymes showed weak non-specific association in cellular environments attributed to solvation and entropic effects. These effects are expected to have broad implications for the in vivo functioning of biomolecules. This work is a first step towards physically realistic in silico whole-cell models that connect molecular with cellular biology.


2007 ◽  
Vol 36 (Supplement_1) ◽  
pp. D884-D891 ◽  
Author(s):  
C. Zhang ◽  
O. Crasta ◽  
S. Cammer ◽  
R. Will ◽  
R. Kenyon ◽  
...  

Abstract The NIAID-funded Biodefense Proteomics Resource Center (RC) provides storage, dissemination, visualization and analysis capabilities for the experimental data deposited by seven Proteomics Research Centers (PRCs). The data and its publication is to support researchers working to discover candidates for the next generation of vaccines, therapeutics and diagnostics against NIAID's Category A, B and C priority pathogens. The data includes transcriptional profiles, protein profiles, protein structural data and host–pathogen protein interactions, in the context of the pathogen life cycle in vivo and in vitro. The database has stored and supported host or pathogen data derived from Bacillus, Brucella, Cryptosporidium, Salmonella, SARS, Toxoplasma, Vibrio and Yersinia, human tissue libraries, and mouse macrophages. These publicly available data cover diverse data types such as mass spectrometry, yeast two-hybrid (Y2H), gene expression profiles, X-ray and NMR determined protein structures and protein expression clones. The growing database covers over 23 000 unique genes/proteins from different experiments and organisms. All of the genes/proteins are annotated and integrated across experiments using UniProt Knowledgebase (UniProtKB) accession numbers. The web-interface for the database enables searching, querying and downloading at the level of experiment, group and individual gene(s)/protein(s) via UniProtKB accession numbers or protein function keywords. The system is accessible at http://www.proteomicsresource.org/.


Sign in / Sign up

Export Citation Format

Share Document