scholarly journals Mutation load decreases with haplotype age in wild Soay sheep

2021 ◽  
Author(s):  
M.A. Stoffel ◽  
S.E. Johnston ◽  
J.G. Pilkington ◽  
J.M Pemberton

AbstractRuns of homozygosity (ROH) are pervasive in diploid genomes and expose the effects of deleterious recessive mutations, but how exactly these regions contribute to variation in fitness remains unclear. Here, we combined empirical analyses and simulations to explore the deleterious effects of ROH with varying genetic map lengths in wild Soay sheep. Using a long-term dataset of 4,592 individuals genotyped at 417K SNPs, we found that inbreeding depression increases with ROH length. A 1% genomic increase in long ROH (>12.5cM) reduced the odds of first-year survival by 12%, compared to only 7% for medium ROH (1.56-12.5cM), while short ROH (<1.56cM) had no effect on survival. We show by forward genetic simulations that this is predicted: compared with shorter ROH, long ROH will have higher densities of deleterious alleles, with larger average effects on fitness and lower population frequencies. Taken together, our results are consistent with the idea that the mutation load decreases in older haplotypes underlying shorter ROH, where purifying selection has had more time to purge deleterious mutations. Finally, our study demonstrates that strong inbreeding depression can persist despite ongoing purging in a historically small population.

2021 ◽  
Vol 118 (49) ◽  
pp. e2023018118
Author(s):  
Anubhab Khan ◽  
Kaushalkumar Patel ◽  
Harsh Shukla ◽  
Ashwin Viswanathan ◽  
Tom van der Valk ◽  
...  

Increasing habitat fragmentation leads to wild populations becoming small, isolated, and threatened by inbreeding depression. However, small populations may be able to purge recessive deleterious alleles as they become expressed in homozygotes, thus reducing inbreeding depression and increasing population viability. We used whole-genome sequences from 57 tigers to estimate individual inbreeding and mutation load in a small–isolated and two large–connected populations in India. As expected, the small–isolated population had substantially higher average genomic inbreeding (FROH = 0.57) than the large–connected (FROH = 0.35 and FROH = 0.46) populations. The small–isolated population had the lowest loss-of-function mutation load, likely due to purging of highly deleterious recessive mutations. The large populations had lower missense mutation loads than the small–isolated population, but were not identical, possibly due to different demographic histories. While the number of the loss-of-function alleles in the small–isolated population was lower, these alleles were at higher frequencies and homozygosity than in the large populations. Together, our data and analyses provide evidence of 1) high mutation load, 2) purging, and 3) the highest predicted inbreeding depression, despite purging, in the small–isolated population. Frequency distributions of damaging and neutral alleles uncover genomic evidence that purifying selection has removed part of the mutation load across Indian tiger populations. These results provide genomic evidence for purifying selection in both small and large populations, but also suggest that the remaining deleterious alleles may have inbreeding-associated fitness costs. We suggest that genetic rescue from sources selected based on genome-wide differentiation could offset any possible impacts of inbreeding depression.


2021 ◽  
Author(s):  
Anubhab Khan ◽  
Kaushalkumar Patel ◽  
Harsh Shukla ◽  
Ashwin Viswanathan ◽  
Tom van der Valk ◽  
...  

Increasing habitat fragmentation leads to wild populations becoming small, isolated, and threatened by inbreeding depression. However, small populations may be able to purge recessive deleterious alleles as they become expressed in homozygotes, thus reducing inbreeding depression and increasing population viability. We used genome sequencing of 57 tigers to estimate individual inbreeding and mutation loads in a small-isolated, and two large-connected populations in India. As expected, the small-isolated population had substantially higher average genomic inbreeding (FROH=0.57) than the large-connected (FROH=0.35 and FROH=0.46) populations. The small-isolated population had the lowest loss-of-function mutation load, likely due to purging of highly deleterious recessive mutations. The large populations had lower missense mutation loads than the small-isolated population, but were not identical, possibly due to different demographic histories. While the number of the loss-of-function alleles in the small-isolated population was lower, these alleles were at high frequencies and homozygosity than in the large populations. Together, our data and analyses provide evidence of (a) high mutation load; (b) purging and (c) the highest predicted inbreeding depression, despite purging, in the small-isolated population. Frequency distributions of damaging and neutral alleles uncover genomic evidence that purifying selection has removed part of the mutation load across Indian tiger populations. These results provide genomic evidence for purifying selection in both small and large populations, but also suggest that the remaining deleterious alleles may have inbreeding associated fitness costs. We suggest that genetic rescue from sources selected based on genome-wide differentiation should offset any possible impacts of inbreeding depression.


Genetics ◽  
2002 ◽  
Vol 160 (3) ◽  
pp. 1191-1202 ◽  
Author(s):  
Michael C Whitlock

Abstract The subdivision of a species into local populations causes its response to selection to change, even if selection is uniform across space. Population structure increases the frequency of homozygotes and therefore makes selection on homozygous effects more effective. However, population subdivision can increase the probability of competition among relatives, which may reduce the efficacy of selection. As a result, the response to selection can be either increased or decreased in a subdivided population relative to an undivided one, depending on the dominance coefficient FST and whether selection is hard or soft. Realistic levels of population structure tend to reduce the mean frequency of deleterious alleles. The mutation load tends to be decreased in a subdivided population for recessive alleles, as does the expected inbreeding depression. The magnitude of the effects of population subdivision tends to be greatest in species with hard selection rather than soft selection. Population structure can play an important role in determining the mean fitness of populations at equilibrium between mutation and selection.


2019 ◽  
Author(s):  
Himani Sachdeva

AbstractThis paper analyzes how partial selfing in a large source population influences its ability to colonize a new habitat via the introduction of a few founder individuals. Founders experience inbreeding depression due to partially recessive deleterious alleles as well as maladaptation to the new environment due to selection on a large number of additive loci. I first introduce a simplified version of the Inbreeding History Model (Kelly, 2007) in order to characterize mutation-selection balance in a large, partially selfing source population under selection involving multiple non-identical loci. I then use individual-based simulations to study the eco-evolutionary dynamics of founders establishing in the new habitat under a model of hard selection. The study explores how selfing rate shapes establishment probabilities of founders via effects on both inbreeding depression and adaptability to the new environment, and also distinguishes the effects of selfing on the initial fitness of founders from its effects on the long-term adaptive response of the populations they found. A high rate of (but not complete) selfing is found to aid establishment over a wide range of parameters, even in the absence of mate limitation. The sensitivity of the results to assumptions about the nature of polygenic selection are discussed.


2021 ◽  
Author(s):  
Adam R Festa ◽  
Ross Whetten

Computer simulations of breeding strategies are an essential resource for tree breeders because they allow exploratory analyses into potential long-term impacts on genetic gain and inbreeding consequences without bearing the cost, time, or resource requirements of field experiments. Previous work has modeled the potential long-term implications on inbreeding and genetic gain using random mating and phenotypic selection. Reduction in sequencing costs has enabled the use of DNA marker-based relationship matrices in addition to or in place of pedigree-based allele sharing estimates; this has been shown to provide a significant increase in the accuracy of progeny breeding value prediction. A potential pitfall of genomic selection using genetic relationship matrices is increased coancestry among selections, leading to the accumulation of deleterious alleles and inbreeding depression. We used simulation to compare the relative genetic gain and risk of inbreeding depression within a breeding program similar to loblolly pine, utilizing pedigree-based or marker-based relationships over ten generations. We saw a faster rate of purging deleterious alleles when using a genomic relationship matrix based on markers that track identity-by-descent of segments of the genome. Additionally, we observed an increase in the rate of genetic gain when using a genomic relationship matrix instead of a pedigree-based relationship matrix. While the genetic variance of populations decreased more rapidly when using genomic-based relationship matrices as opposed to pedigree-based, there appeared to be no long-term consequences on the accumulation of deleterious alleles within the simulated breeding strategy.


2009 ◽  
Vol 5 (5) ◽  
pp. 663-666 ◽  
Author(s):  
Peter Korsten ◽  
Tim Clutton-Brock ◽  
Jill G. Pilkington ◽  
Josephine M. Pemberton ◽  
Loeske E. B. Kruuk

Males and females often have different requirements during early development, leading to sex-specific interactions between developing offspring. In polytocous mammals, competition for limited resources in utero may be asymmetrical between the sexes, and androgens produced by male foetuses could have adverse effects on the development of females, with potentially long-lasting consequences. We show here, in an unmanaged population of Soay sheep, that female lambs with a male co-twin have reduced birth weight relative to those with a female co-twin, while there was no such effect in male twins. In addition, females with a male co-twin had lower lifetime breeding success, which appeared to be mainly driven by differences in first-year survival. These results show that sex-specific sibling interactions can have long-term consequences for survival and reproduction, with potentially important implications for optimal sex allocation.


Heredity ◽  
2021 ◽  
Author(s):  
Noelia Pérez-Pereira ◽  
Ramón Pouso ◽  
Ana Rus ◽  
Ana Vilas ◽  
Eugenio López-Cortegano ◽  
...  

AbstractInbreeding depression, the decline in fitness of inbred individuals, is a ubiquitous phenomenon of great relevance in evolutionary biology and in the fields of animal and plant breeding and conservation. Inbreeding depression is due to the expression of recessive deleterious alleles that are concealed in heterozygous state in noninbred individuals, the so-called inbreeding load. Genetic purging reduces inbreeding depression by removing these alleles when expressed in homozygosis due to inbreeding. It is generally thought that fast inbreeding (such as that generated by full-sib mating lines) removes only highly deleterious recessive alleles, while slow inbreeding can also remove mildly deleterious ones. However, a question remains regarding which proportion of the inbreeding load can be removed by purging under slow inbreeding in moderately large populations. We report results of two long-term slow inbreeding Drosophila experiments (125–234 generations), each using a large population and a number of derived lines with effective sizes about 1000 and 50, respectively. The inbreeding load was virtually exhausted after more than one hundred generations in large populations and between a few tens and over one hundred generations in the lines. This result is not expected from genetic drift alone, and is in agreement with the theoretical purging predictions. Computer simulations suggest that these results are consistent with a model of relatively few deleterious mutations of large homozygous effects and partially recessive gene action.


2020 ◽  
Author(s):  
William D Orsi ◽  
Tobias Magritsch ◽  
Sergio Vargas ◽  
Omer K Coskun ◽  
Aurele Vuillemin ◽  
...  

The nature and extent of genomic evolution in subseafloor microbial populations subsisting for millions of years below the seafloor is unknown. Subseafloor populations have ultra-slow metabolic rates that are hypothesized to restrict reproduction and, consequently, the spread of new traits. Our findings demonstrate that genomes of cultivated bacterial strains from the genus Thalassospira isolated from million-year-old abyssal sediment exhibit greatly reduced levels of homologous recombination, elevated numbers of pseudogenes, and genome-wide evidence of relaxed purifying selection. These substitutions and pseudogenes are fixed into the population, suggesting the genome evolution of these bacteria has been dominated by genetic drift, whereby under long-term physical isolation in small population sizes, and in the absence of homologous recombination, newly acquired mutations accumulate in the genomes of clonal populations over millions of years.


2003 ◽  
Vol 358 (1434) ◽  
pp. 1071-1084 ◽  
Author(s):  
David E. Carr ◽  
Michele R. Dudash

Predictions for the evolution of mating systems and genetic load vary, depending on the genetic basis of inbreeding depression (dominance versus overdominance, epistasis and the relative frequencies of genes of large and small effect). A distinction between the dominance and overdominance hypotheses is that deleterious recessive mutations should be purged in inbreeding populations. Comparative studies of populations differing in their level of inbreeding and experimental approaches that allow selection among inbred lines support this prediction. More direct biometric approaches provide strong support for the importance of partly recessive deleterious alleles. Investigators using molecular markers to study quantitative trait loci (QTL) often find support for overdominance, though pseudo–overdominance (deleterious alleles linked in repulsion) may bias this perception. QTL and biometric studies of inbred lines often find evidence for epistasis, which may also contribute to the perception of overdominance, though this may be because of the divergent lines initially crossed in QTL studies. Studies of marker segregation distortion commonly uncover genes of major effect on viability, but these have only minor contributions to inbreeding depression. Although considerable progress has been made in understanding the genetic basis of inbreeding depression, we feel that all three aspects merit more study in natural plant populations.


2015 ◽  
Author(s):  
Ivan Juric ◽  
Simon Aeschbacher ◽  
Graham Coop

AbstractHybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Neanderthals and, more broadly, how populations remain distinct after secondary contact. Here, we develop a novel method for estimating the genome-wide average strength of selection and the density of selected sites using estimates of Neanderthal allele frequency along the genomes of modern-day humans. We confirm that East Asians had somewhat higher initial levels of Neanderthal ancestry than Europeans even after accounting for selection. We find that the bulk of purifying selection against Neanderthal ancestry is best understood as acting on many weakly deleterious alleles. We propose that the majority of these alleles were effectively neutral—and segregating at high frequency—in Neanderthals, but became selected against after entering human populations of much larger effective size. While individually of small effect, these alleles potentially imposed a heavy genetic load on the early-generation human–Neanderthal hybrids. This work suggests that differences in effective population size may play a far more important role in shaping levels of introgression than previously thought.Author SummaryA small percentage of Neanderthal DNA is present in the genomes of many contemporary human populations due to hybridization tens of thousands of years ago. Much of this Neanderthal DNA appears to be deleterious in humans, and natural selection is acting to remove it. One hypothesis is that the underlying alleles were not deleterious in Neanderthals, but rather represent genetic incompatibilities that became deleterious only once they were introduced to the human population. If so, reproductive barriers must have evolved rapidly between Neanderthals and humans after their split. Here, we show that oberved patterns of Neanderthal ancestry in modern humans can be explained simply as a consequence of the difference in effective population size between Neanderthals and humans. Specifically, we find that on average, selection against individual Neanderthal alleles is very weak. This is consistent with the idea that Neanderthals over time accumulated many weakly deleterious alleles that in their small population were effectively neutral. However, after introgressing into larger human populations, those alleles became exposed to purifying selection. Thus, rather than being the result of hybrid incompatibilities, differences between human and Neanderthal effective population sizes appear to have played a key role in shaping our present-day shared ancestry.


Sign in / Sign up

Export Citation Format

Share Document