scholarly journals The Strength of Selection Against Neanderthal Introgression

2015 ◽  
Author(s):  
Ivan Juric ◽  
Simon Aeschbacher ◽  
Graham Coop

AbstractHybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Neanderthals and, more broadly, how populations remain distinct after secondary contact. Here, we develop a novel method for estimating the genome-wide average strength of selection and the density of selected sites using estimates of Neanderthal allele frequency along the genomes of modern-day humans. We confirm that East Asians had somewhat higher initial levels of Neanderthal ancestry than Europeans even after accounting for selection. We find that the bulk of purifying selection against Neanderthal ancestry is best understood as acting on many weakly deleterious alleles. We propose that the majority of these alleles were effectively neutral—and segregating at high frequency—in Neanderthals, but became selected against after entering human populations of much larger effective size. While individually of small effect, these alleles potentially imposed a heavy genetic load on the early-generation human–Neanderthal hybrids. This work suggests that differences in effective population size may play a far more important role in shaping levels of introgression than previously thought.Author SummaryA small percentage of Neanderthal DNA is present in the genomes of many contemporary human populations due to hybridization tens of thousands of years ago. Much of this Neanderthal DNA appears to be deleterious in humans, and natural selection is acting to remove it. One hypothesis is that the underlying alleles were not deleterious in Neanderthals, but rather represent genetic incompatibilities that became deleterious only once they were introduced to the human population. If so, reproductive barriers must have evolved rapidly between Neanderthals and humans after their split. Here, we show that oberved patterns of Neanderthal ancestry in modern humans can be explained simply as a consequence of the difference in effective population size between Neanderthals and humans. Specifically, we find that on average, selection against individual Neanderthal alleles is very weak. This is consistent with the idea that Neanderthals over time accumulated many weakly deleterious alleles that in their small population were effectively neutral. However, after introgressing into larger human populations, those alleles became exposed to purifying selection. Thus, rather than being the result of hybrid incompatibilities, differences between human and Neanderthal effective population sizes appear to have played a key role in shaping our present-day shared ancestry.


2011 ◽  
Vol 93 (2) ◽  
pp. 105-114 ◽  
Author(s):  
LEEYOUNG PARK

SummaryIn order to estimate the effective population size (Ne) of the current human population, two new approaches, which were derived from previous methods, were used in this study. One is based on the deviation from linkage equilibrium (LE) between completely unlinked loci in different chromosomes and another is based on the deviation from the Hardy–Weinberg Equilibrium (HWE). When random mating in a population is assumed, genetic drifts in population naturally induce linkage disequilibrium (LD) between chromosomes and the deviation from HWE. The latter provides information on the Ne of the current population, and the former provides the same when the Ne is constant. If Ne fluctuates, recent Ne changes are reflected in the estimates based on LE, and the comparison between two estimates can provide information regarding recent changes of Ne. Using HapMap Phase III data, the estimates were varied from 622 to 10 437, depending on populations and estimates. The Ne appeared to fluctuate as it provided different estimates for each of the two methods. These Ne estimates were found to agree approximately with the overall increment observed in recent human populations.



Genetics ◽  
1997 ◽  
Vol 147 (4) ◽  
pp. 1977-1982
Author(s):  
Stephen T Sherry ◽  
Henry C Harpending ◽  
Mark A Batzer ◽  
Mark Stoneking

Abstract There are estimated to be ~1000 members of the Ya5 Alu subfamily of retroposons in humans. This Subfamily has a distribution restricted to humans, with a few copies in gorillas and chimpanzees. Fifty-seven Ya5 elements were previously cloned from a HeLaderived randomly sheared total genomic library, sequenced, and screened for polymorphism in a panel of 120 unrelated humans. Forty-four of the 57 cloned Alu repeats were monomorphic in the sample and 13 Alu repeats were dimorphic for insertion presence/absence. The observed distribution of sample frequencies of the 13 dimorphic elements is consistent with the theoretical expectation for elements ascertained in a single diploid cell line. Coalescence theory is used to compute expected total pedigree branch lengths for monomorphic and dimorphic elements, leading to an estimate of human effective population size of ~18,000 during the last one to two million years.



2011 ◽  
Vol 29 (1) ◽  
pp. 25-30 ◽  
Author(s):  
Marta Melé ◽  
Asif Javed ◽  
Marc Pybus ◽  
Pierre Zalloua ◽  
Marc Haber ◽  
...  


1985 ◽  
Vol 17 (1) ◽  
pp. 97-106 ◽  
Author(s):  
John H. Relethford

SummaryA method is presented for examining the relationship between effective population size and accumulated random inbreeding in human populations. For a set of populations, the inverse of inbreeding is regressed on effective population size using a linear regression model. This procedure allows testing of several hypotheses regarding the common and unique influences on population structure. Deviations from the expected curve suggest demographic or historical change. This method is applied to surname data from nine Irish isolates. The results show that the method is very useful in assessing differential influences on population structure.



2010 ◽  
Vol 107 (5) ◽  
pp. 2147-2152 ◽  
Author(s):  
Chad D. Huff ◽  
Jinchuan Xing ◽  
Alan R. Rogers ◽  
David Witherspoon ◽  
Lynn B. Jorde

The genealogies of different genetic loci vary in depth. The deeper the genealogy, the greater the chance that it will include a rare event, such as the insertion of a mobile element. Therefore, the genealogy of a region that contains a mobile element is on average older than that of the rest of the genome. In a simple demographic model, the expected time to most recent common ancestor (TMRCA) is doubled if a rare insertion is present. We test this expectation by examining single nucleotide polymorphisms around polymorphic Alu insertions from two completely sequenced human genomes. The estimated TMRCA for regions containing a polymorphic insertion is two times larger than the genomic average (P < <10−30), as predicted. Because genealogies that contain polymorphic mobile elements are old, they are shaped largely by the forces of ancient population history and are insensitive to recent demographic events, such as bottlenecks and expansions. Remarkably, the information in just two human DNA sequences provides substantial information about ancient human population size. By comparing the likelihood of various demographic models, we estimate that the effective population size of human ancestors living before 1.2 million years ago was 18,500, and we can reject all models where the ancient effective population size was larger than 26,000. This result implies an unusually small population for a species spread across the entire Old World, particularly in light of the effective population sizes of chimpanzees (21,000) and gorillas (25,000), which each inhabit only one part of a single continent.



1989 ◽  
Vol 46 (6) ◽  
pp. 928-931 ◽  
Author(s):  
Jan Hennsng L'abée-Lund

The spawning population of Atlantic salmon, Salmo salar, (mature male parr and adults (anadromous salmon)) were assessed in the River Baevra, central Norway, when the river was treated with rotenone in November 1986. The spawning population of adults consisted of 15 males and 19 females. The spawning population of males consisted of 167 mature male parr per adult male. The effective population size of adults was small; Na = 33.5 individuals. The presence of mature male parr theoretically increased the effective population size to Na = 71.7 individuals. This increase indicated that mature male parr brought the effective population size above a recommended minimum (Na = 50) to ensure long term viability.



2017 ◽  
Author(s):  
John Hawks

AbstractHuman populations have a complex history of introgression and of changing population size. Human genetic variation has been affected by both these processes, so that inference of past population size depends upon the pattern of gene flow and introgression among past populations. One remarkable aspect of human population history as inferred from genetics is a consistent “wave” of larger effective population size, prior to the bottlenecks and expansions of the last 100,000 years. Here I carry out a series of simulations to investigate how introgression and gene flow from genetically divergent ancestral populations affect the inference of ancestral effective population size. Both introgression and gene flow from an extinct, genetically divergent population consistently produce a wave in the history of inferred effective population size. The time and amplitude of the wave reflect the time of origin of the genetically divergent ancestral populations and the strength of introgression or gene flow. These results demonstrate that even small fractions of introgression or gene flow from ancient populations may have large effects on the inference of effective population size.



BMC Genetics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Sankar Subramanian

Abstract Background It is well known that the effective size of a population (Ne) is one of the major determinants of the amount of genetic variation within the population. However, it is unclear whether the types of genetic variations are also dictated by the effective population size. To examine this, we obtained whole genome data from over 100 populations of the world and investigated the patterns of mutational changes. Results Our results revealed that for low frequency variants, the ratio of AT→GC to GC→AT variants (β) was similar across populations, suggesting the similarity of the pattern of mutation in various populations. However, for high frequency variants, β showed a positive correlation with the effective population size of the populations. This suggests a much higher proportion of high frequency AT→GC variants in large populations (e.g. Africans) compared to those with small population sizes (e.g. Asians). These results imply that the substitution patterns vary significantly between populations. These findings could be explained by the effect of GC-biased gene conversion (gBGC), which favors the fixation of G/C over A/T variants in populations. In large population, gBGC causes high β. However, in small populations, genetic drift reduces the effect of gBGC resulting in reduced β. This was further confirmed by a positive relationship between Ne and β for homozygous variants. Conclusions Our results highlight the huge variation in the types of homozygous and high frequency polymorphisms between world populations. We observed the same pattern for deleterious variants, implying that the homozygous polymorphisms associated with recessive genetic diseases will be more enriched with G or C in populations with large Ne (e.g. Africans) than in populations with small Ne (e.g. Europeans).



Sign in / Sign up

Export Citation Format

Share Document