scholarly journals Scalable, Micro-Neutralization Assay for Qualitative Assessment of SARS-CoV-2 (COVID-19) Virus-Neutralizing Antibodies in Human Clinical Samples

Author(s):  
Richard S. Bennett ◽  
Elena N. Postnikova ◽  
Janie Liang ◽  
Robin Gross ◽  
Steven Mazur ◽  
...  

AbstractAs the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic was expanding, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5,000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.

Viruses ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 893
Author(s):  
Richard S. Bennett ◽  
Elena N. Postnikova ◽  
Janie Liang ◽  
Robin Gross ◽  
Steven Mazur ◽  
...  

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic expanded, it was clear that effective testing for the presence of neutralizing antibodies in the blood of convalescent patients would be critical for development of plasma-based therapeutic approaches. To address the need for a high-quality neutralization assay against SARS-CoV-2, a previously established fluorescence reduction neutralization assay (FRNA) against Middle East respiratory syndrome coronavirus (MERS-CoV) was modified and optimized. The SARS-CoV-2 FRNA provides a quantitative assessment of a large number of infected cells through use of a high-content imaging system. Because of this approach, and the fact that it does not involve subjective interpretation, this assay is more efficient and more accurate than other neutralization assays. In addition, the ability to set robust acceptance criteria for individual plates and specific test wells provided further rigor to this assay. Such agile adaptability avails use with multiple virus variants. By February 2021, the SARS-CoV-2 FRNA had been used to screen over 5000 samples, including acute and convalescent plasma or serum samples and therapeutic antibody treatments, for SARS-CoV-2 neutralizing titers.


2021 ◽  
Author(s):  
Syed Hani Abidi ◽  
Kehkeshan Imtiaz ◽  
Akbar Kanji ◽  
Shama Qaiser ◽  
Erum Khan ◽  
...  

Abstract Background Individuals recovering from COVID-19 are shown to have antibodies against the Spike and other structural proteins. Antibodies against Spike have been shown to display viral neutralization. However, not all antibodies against Spike have neutralizing ability and some may be cross-reactive. There is a need for easy-to-use SARS-CoV-2 neutralizing assays that allow the determination of virus neutralizing activity in sera of individuals. Here we describe a PCR-based micro-neutralization assay that can be used to evaluate the viral neutralization titers of serum from SARS-CoV-2 infected individuals. Methods The SARS-CoV-2 strain used was isolated from a nasopharyngeal specimen of a COVID-19 case. The limiting dilution method was used to obtain a 50% tissue culture infective dose (TCID50) of Vero cells. For the micro‐neutralization assay, 19 serum samples, with positive IgG titers against Spike receptor binding domain (RBD) were tested. After 24 hours, infected cells were inspected for the presence of the cytopathic effect, then lysed and RNA RT-PCR of SARS-CoV-2. The Ct values were used to calculate percent neutralization/inhibition of SARS-CoV-2. Results Out of 19 samples, 13 samples gave 100% neutralization at all dilutions, while 4 samples gave neutralization at lower dilution, while one sample did not give any neutralization. The correlation between RBD OD and neutralization potential was found to be statistically correlated. Conclusion We describe a rapid RT-PCR based SARS-CoV-2 microneutralization assay for detection of neutralizing antibodies. This can effectively be used to test anti-viral activity of serum antibodies for investigation of both disease-driven and vaccine-induced responses.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0221407 ◽  
Author(s):  
Elena N. Postnikova ◽  
James Pettitt ◽  
Collin J. Van Ryn ◽  
Michael R. Holbrook ◽  
Laura Bollinger ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0259551
Author(s):  
Syed Hani Abidi ◽  
Kehkashan Imtiaz ◽  
Akbar Kanji ◽  
Shama Qaiser ◽  
Erum Khan ◽  
...  

Background Individuals recovering from COVID-19 are known to have antibodies against the Spike and other structural proteins. Antibodies against Spike have been shown to display viral neutralization. However, not all antibodies against Spike have neutralizing ability although they may be cross-reactive. There is a need for easy-to-use SARS-CoV-2 neutralizing assays for the determination of virus-neutralizing activity in sera of individuals. Here we describe a PCR-based micro‐neutralization assay that can be used to evaluate the viral neutralization titers of serum from SARS-CoV-2 infected individuals. Methods The SARS-CoV-2 strain used was isolated from a nasopharyngeal specimen of a COVID-19 case. The limiting dilution method was used to obtain a 50% tissue culture infective dose (TCID50) of Vero cells. For the micro‐neutralization assay, 19 serum samples, with positive IgG titers against Spike Receptor-Binding Domain (RBD) were tested. After 24 hours, infected cells were inspected for the presence of a cytopathic effect, lysed and RNA RT-PCR conducted for SARS-CoV-2. PCR target Ct values were used to calculate percent neutralization/inhibition of SARS-CoV-2. Results Out of 19 samples, 13 samples gave 100% neutralization at all dilutions, 1 sample showed neutralization at the first dilution, 4 samples showed neutralization at lower dilutions, while one sample did not demonstrate any neutralization. The RBD ODs and neutralization potential percentages were found to be positively correlated. Conclusion We describe a rapid RT-PCR-based SARS-CoV-2 microneutralization assay for the detection of neutralizing antibodies. This can effectively be used to test the antiviral activity of serum antibodies for the investigation of both disease-driven and vaccine-induced responses.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 994
Author(s):  
Ahmed Majdi K. Tolah ◽  
Sayed S. Sohrab ◽  
Khaled Majdi K. Tolah ◽  
Ahmed M. Hassan ◽  
Sherif A. El-Kafrawy ◽  
...  

The unusual cases of pneumonia outbreak were reported from Wuhan city in late December 2019. Serological testing provides a powerful tool for the identification of prior infection and for epidemiological studies. Pseudotype virus neutralization assays are widely used for many viruses and applications in the fields of serology. The accuracy of pseudotype neutralizing assay allows for its use in low biosafety lab and provides a safe and effective alternative to the use of wild-type viruses. In this study, we evaluated the performance of this assay compared to the standard microneutralization assay as a reference. The lentiviral pseudotype particles were generated harboring the Spike gene of SARS-CoV-2. The generated pseudotype particles assay was used to evaluate the activity of neutralizing antibodies in 300 human serum samples from a COVID-19 sero-epidemiological study. Testing of these samples resulted in 55 positive samples and 245 negative samples by pseudotype viral particles assay while microneutralization assay resulted in 64 positive and 236 negative by MN assay. Compared to the MN, the pseudotyped viral particles assay showed a sensitivity of 85.94% and a specificity of 100%. Based on the data generated from this study, the pseudotype-based neutralization assay showed a reliable performance for the detection of neutralizing antibodies against SARS-CoV-2 and can be used safely and efficiently as a diagnostic tool in a biosafety level 2 laboratory.


2002 ◽  
Vol 9 (3) ◽  
pp. 562-567
Author(s):  
Olga Tapia ◽  
Anatoly Slepenkin ◽  
Evgueni Sevrioukov ◽  
Kathi Hamor ◽  
Luis M. de la Maza ◽  
...  

ABSTRACT A study was conducted to determine the ability of the inclusion immunofluorescence assay (inclusion IFA) to act as a screening test to detect samples with antibodies to Chlamydia pneumoniae; microimmunofluorescence (MIF) was used as the “gold standard.” In addition, the inclusion IFA was compared using HEp-2 cells infected with either C. pneumoniae CM-1 or Chlamydia trachomatis serovar E. A total of 331 serum samples representing a range of MIF titers were evaluated. The sensitivities of the inclusion IFA for detecting samples with C. pneumoniae MIF titers of ≥16 were 96.9 and 74.8% with C. pneumoniae- and C. trachomatis-infected cells, respectively. For samples with an elevated C. pneumoniae MIF titer of ≥512, the sensitivities of the C. pneumoniae- and C. trachomatis-based inclusion IFA were 97.0 and 8.8%, respectively. These results suggest that the inclusion IFA is not a genus-specific test, as evidenced by the failure of the C. trachomatis-infected cells to detect a significant number of samples with C. pneumoniae antibodies. Samples that had elevated C. pneumoniae inclusion IFA and MIF titers but that were found negative (titer, <16) by the C. trachomatis inclusion IFA were further tested by an in vitro neutralization assay for functional antibodies that might not have been detected by the serological assays. The in vitro neutralization results corroborated the serological results in that all seven sera tested had a neutralization titer for C. pneumoniae (range, 20 to 225), while all but one failed to have any effect on the infectivity of C. trachomatis serovar E. While the C. pneumoniae inclusion IFA had a high sensitivity for detecting chlamydial antibodies, depending on whether it was used as a screening test for detecting samples with low (≥16) or elevated (≥512) MIF titers, its specificity ranged from 53.4 to 77.1%. In conclusion, the inclusion IFA with C. pneumoniae-infected cells was best suited as a sensitive screening test for identifying specimens with elevated MIF titers (those associated with a possible acute infection with C. pneumoniae).


2004 ◽  
Vol 11 (2) ◽  
pp. 351-357 ◽  
Author(s):  
Edward Nwanegbo ◽  
Eftyhia Vardas ◽  
Wentao Gao ◽  
Hilton Whittle ◽  
Huijie Sun ◽  
...  

ABSTRACT One of the major limitations of the use of adenoviruses as gene therapy vectors is the existence of preformed immunity in various populations. Recent studies have linked failure of adenoviral gene therapy trials to the presence of antiadenoviral neutralizing antibodies (NAb). Understanding the distribution and specificity of such antibodies will assist in the design of successful recombinant adenoviral gene therapies and vaccines. To assess the prevalence of NAb to adenovirus serotypes 5 and 35 (Ad5 and Ad35), we analyzed serum samples from adult immunocompetent individuals living in The Gambia, South Africa, and the United States by using a neutralization assay. Serum samples were incubated with A549 lung carcinoma cells and adenoviruses encoding enhanced green or yellow fluorescent proteins; results were analyzed by fluorescence microscopy and flow cytometry. Using this technique, we found a high prevalence of NAb against Ad5 in Gambian, South African, and U.S. subjects at both low and high titers. Conversely, all subjects displayed a low prevalence of NAb to Ad35; when present, anti-Ad35 NAb were seen at low titers. Because of the ability of adenoviruses to elicit systemic and mucosal immune responses, Ad35 with its low NAb prevalence appears to be an attractive candidate vector for gene therapy applications.


2021 ◽  
Vol 15 (12) ◽  
pp. e0009961
Author(s):  
Elizabeth Ajema Chebichi Luvai ◽  
Aung Kyaw Kyaw ◽  
Nundu Sabiti Sabin ◽  
Fuxun Yu ◽  
Saw Wut Hmone ◽  
...  

Introduction Chikungunya virus (CHIKV) is a mosquito-borne virus known to cause acute febrile illness associated with debilitating polyarthritis. In 2019, several institutions in Myanmar reported a CHIKV outbreak. There are no official reports of CHIKV cases between 2011 and 2018. Therefore, this study sought to determine the seroprevalence of CHIKV infection before the 2019 outbreak. Methods A total of 1,544 serum samples were collected from healthy volunteers and patients with febrile illnesses in Yangon, Mandalay, and the Myeik district in 2013, 2015, and 2018. Participants ranged from one month to 65 years of age. Antibody screening was performed with in-house anti-CHIKV IgG and IgM ELISA. A neutralization assay was used as a confirmatory test. Results The seroprevalence of anti-CHIKV IgM and anti-CHIKV IgG was 8.9% and 28.6%, respectively, with an overall seropositivity rate of 34.5%. A focus reduction neutralization assay confirmed 32.5% seroprevalence of CHIKV in the study population. Age, health status, and region were significantly associated with neutralizing antibodies (NAbs) and CHIKV seropositivity (p < 0.05), while gender was not (p = 0.9). Seroprevalence in 2013, 2015, and 2018 was 32.1%, 28.8%, and 37.3%, respectively. Of the clinical symptoms observed in participants with fevers, arthralgia was mainly noted in CHIKV-seropositive patients. Conclusion The findings in this study reveal the circulation of CHIKV in Myanmar’s Mandalay, Yangon, and Myeik regions before the 2019 CHIKV outbreak. As no treatment or vaccine for CHIKV exists, the virus must be monitored through systematic surveillance in Myanmar.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1957
Author(s):  
Heidi Auerswald ◽  
Simone Kann ◽  
Leonard Klepsch ◽  
Janne Hülsemann ◽  
Ines Rudnik ◽  
...  

Sequential infections of humans by the four different dengue serotypes (DENV-1–4) lead to neutralizing antibodies with group, cross, and type specificity. Virus neutralization of serotypes showed monotypic but mostly multitypic neutralization profiles due to multiple virus exposures. We have studied neutralization to heterologous, reference DENV serotypes using paired sera collected between days 6 and 37 after onset of fever. The DENV-primed neutralization profile of the first serum sample, which was monitored by a foci reduction neutralization test (FRNT), was boosted but the neutralization profile stayed unchanged in the second serum sample. In 45 of 47 paired serum samples, the predominant neutralization was directed against DENV serotypes distinct from the infecting serotype. Homologous neutralization studies using sera and viruses from the same area, 33 secondary sera from DENV-1 infected Cambodian patients and eight virus isolates from Cambodia, showed that the FRNT assay accurately predicted the lack of a predominant antibody response against the infecting DENV-1 serotype in contrast to FRNT results using the WHO set of DENV viruses. This report provides evidence that DENV-primed multitypic neutralizing antibody profiles were mainly boosted and stayed unchanged after secondary infection and that DENV neutralization was predominantly directed to heterologous DENV but not against the infecting homologous serotype.


2021 ◽  
Vol 71 (Suppl-3) ◽  
pp. S530-33
Author(s):  
Maqbool Raza ◽  
Muhammed Ali Raza ◽  
De Emmal Asjad Cheema ◽  
Maham Asjad Cheema ◽  
Atif Rafique ◽  
...  

Objective: To explore the disappearance of neutralizing antibodies from patients, their myths, and facts. Study Design: Cross-sectional study. Place and Duration of Study: Combined Military Hospital Multan Pakistan, from Jul 2021 to Aug 2021. Methodology: A total of 100 blood samples were collected from 100 COVID-19 patients. These 100 patients were followed up for a period of 3 months. Antibodies were determined with the modified neutralization assay method and enzyme-linked immuno-sorbent assay (ELISA). Results: The antibody level by NA and ELISA peaked on days 30-35 then decreased slightly. In multivariate analysis, patients aged 25-35, 36-56, and 57-84 years had a higher neutralizing antibody level than those aged 10-21 years. The patient with the worst clinical manifestation had a higher neutralizing antibody titer. In serum samples, IgG was undetectable at 18.3% and 11% and the geographical mean reciprocal titers dropped from 244 at 3-month period and neutralizing antibodies, the geographical mean reciprocal titers dropped from 874 at 3 months. Conclusion: All COVID-19 patients were seropositive and significantly neutralizing antibody response. Neutralizing antibody levels depend on the time after the onset of symptoms, age, and severity of the disease.


Sign in / Sign up

Export Citation Format

Share Document