scholarly journals Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus

2021 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Anandkumar Tengli

AbstractGestational diabetes mellitus (GDM) is one of the metabolic diseases during pregnancy. The identification of the central molecular mechanisms liable for the disease pathogenesis might lead to the advancement of new therapeutic options. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed with limma package. Gene ontology (GO) and REACTOME enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA-hub gene network and TF-hub gene regulatory network by the miRNet database and NetworkAnalyst database. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up regulated and 430 down regulated genes. Biological process analysis of GO enrichment analysis showed these DEGs were mainly enriched in reproduction, nuclear outer membrane-endoplasmic reticulum membrane network, identical protein binding, cell adhesion, supramolecular complex and signaling receptor binding. Signaling pathway enrichment analysis indicated that these DEGs played a vital in cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3, and PRKCA in the center of the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. Our results indicated that HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3, and PRKCA could be the potential novel biomarkers for GDM diagnosis, prognosis and the promising therapeutic targets. The current might be essential to understanding the molecular mechanism of GDM initiation and development.

2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Heart failure (HF) is a complex cardiovascular diseases associated with high mortality. To discover key molecular changes in HF, we analyzed next-generation sequencing (NGS) data of HF. In this investigation, differentially expressed genes (DEGs) were analyzed using limma in R package from GSE161472 of the Gene Expression Omnibus (GEO). Then, gene enrichment analysis, protein-protein interaction (PPI) network, miRNA-hub gene regulatory network and TF-hub gene regulatory network construction, and topological analysis were performed on the DEGs by the Gene Ontology (GO), REACTOME pathway, STRING, HiPPIE, miRNet, NetworkAnalyst and Cytoscape. Finally, we performed receiver operating characteristic curve (ROC) analysis of hub genes. A total of 930 DEGs 9464 up regulated genes and 466 down regulated genes) were identified in HF. GO and REACTOME pathway enrichment results showed that DEGs mainly enriched in localization, small molecule metabolic process, SARS-CoV infections and the citric acid (TCA) cycle and respiratory electron transport. Subsequently, the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed, and 10 hub genes in these network were focused on by centrality analysis and module analysis. Furthermore, data showed that HSP90AA1, ARRB2, MYH9, HSP90AB1, FLNA, EGFR, PIK3R1, CUL4A, YEATS4 and KAT2B were good diagnostic values. In summary, this study suggests that HSP90AA1, ARRB2, MYH9, HSP90AB1, FLNA, EGFR, PIK3R1, CUL4A, YEATS4 and KAT2B may act as the key genes in HF.


2021 ◽  
Author(s):  
Varun Alur ◽  
Varshita Raju ◽  
Basavaraj Mallikarjunayya Vastrad ◽  
Anandkumar Revanasiddappa Tengli ◽  
Chanabasayya Vastrad ◽  
...  

Gestational diabetes mellitus (GDM) is the metabolic disorder appears during pregnancy. The current investigation aimed to identify central differentially expressed genes (DEGs) in GDM. The transcription profiling by array data (E-MTAB-6418) was obtained from the ArrayExpress database. The DEGs between GDM samples and non GDM samples were analyzed. Functional enrichment analysis were performed using ToppGene. Then we constructed the protein-protein interaction (PPI) network of DEGs by the Search Tool for the Retrieval of Interacting Genes database (STRING) and module analysis was performed. Subsequently, we constructed the miRNA-hub gene network and TF-hub gene regulatory network. The validation of hub genes was performed through receiver operating characteristic curve (ROC). Finally, the candidate small molecules as potential drugs to treat GDM were predicted by using molecular docking. Through transcription profiling by array data, a total of 869 DEGs were detected including 439 up regulated and 430 down regulated genes. Functional enrichment analysis showed these DEGs were mainly enriched in reproduction, cell adhesion, cell surface interactions at the vascular wall and extracellular matrix organization. Ten genes, HSP90AA1, EGFR, RPS13, RBX1, PAK1, FYN, ABL1, SMAD3, STAT3, and PRKCA were associated with GDM, according to ROC analysis. Finally, the most significant small molecules were predicted based on molecular docking. This investigation identified hub genes, signal pathways and therapeutic agents, which might help us, enhance our understanding of the mechanisms of GDM and find some novel therapeutic agents for GDM.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were then performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway. The top hub genes such as MYC, EGFR, LNX1, YBX1, HSP90AA1, ESR1, FN1, TK1, ANLN and SMAD9 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Receiver operating characteristic curve (ROC) analysis and RT-PCR confirmed that these genes were significantly associated with T1DM. In conclusion, the identified DEGs, particularly the hub genes, strengthen the understanding of the advancement and progression of T1DM, and certain genes might be used as candidate target molecules to diagnose, monitor and treat T1DM.


2021 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad

AbstractMyocardial infarction (MI) is the leading cardiovascular diseases in worldwide, yet relatively little is known about the genes and signaling pathways involved in MI progression. The present investigation aimed to elucidate potential crucial candidate genes and pathways in MI. expression profiling by high throughput sequencing dataset (GSE132143) was downloaded from the Gene Expression Omnibus (GEO) database, which included data from 20 MI samples and 12 normal control samples. Differentially expressed genes (DEGs) were identified using t-tests in the DESeq2 R package. These DEGs were subsequently investigated by Gene Ontology (GO) and pathway enrichment analysis, a protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed and analyzed. Hub genes were validated by receiver operating characteristic curve (ROC) analysis. In total, 958 DEGs were identified, of which 480 were up regulated and 478 were down regulated. GO and pathway enrichment analysis results revealed that the DEGs were mainly enriched in, immune system, neuronal system, response to stimulus, and multicellular organismal process. A PPI network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network was constructed by using Cytoscape software, and CFTR, CDK1, RPS13, RPS15A, RPS27, NOTCH1, MRPL12, NOS2, CCDC85B and ATN1 were identified as the hub genes. Our results highlight the important roles of the genes including CFTR, CDK1, RPS13, RPS15A, RPS27, NOTCH1, MRPL12, NOS2, CCDC85B and ATN1 in MI pathogenesis or therapeutic management.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Non alcoholic fatty liver disease (NAFLD) is the most common metabolic disease in humans, affecting the majority of individuals. In the current investigation, we aim to identify potential key genes linked with NAFLD through bioinformatics analyses of next generation sequencing (NGS) dataset. NGS dataset of GSE135251 from the Gene Expression Omnibus (GEO) database were retrieved. Differentially expressed genes (DEGs) were obtained by DESeq2 package. g:Profiler database was further used to identify the potential gene ontology (GO) and REACTOME pathways. Protein-protein interaction (PPI) network was constructed using the Hippie interactome database. miRNet and NetworkAnalyst databases were used to establish a miRNA-hub gene regulatory network and TF-hub gene regulatory network for the hub genes. Hub genes were verified based on receiver operating characteristic curve (ROC) analysis. Totally, 951 DEGs were identified including 476 up regulated genes and 475 down regulated genes screened in NAFLD and normal control. GO showed that DEGs were significantly enhanced for signaling and regulation of biological quality. REACTOME pathway analysis revealed that DEGs were enriched in signaling by interleukins and extracellular matrix organization. ESR2, JUN, PTN, PTGER3, CEBPB, IKBKG, HSPA8, SFN, CDKN1A and E2F1 were indicated as hub genes from PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network. Furthermore, ROC analysis revealed that ESR2, JUN, PTN, PTGER3, CEBPB, IKBKG, HSPA8, SFN, CDKN1A and E2F1 might serve as diagnostic biomarkers in NAFLD. The current investigation provided insights into the molecular mechanism of NAFLD that might be useful in further investigations.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

Gestational diabetes mellitus (GDM) is a metabolic disorder during pregnancy. Numerous biomarkers have been identified that are linked with the occurrence and development of GDM. The aim of this investigation was to identify differentially expressed genes (DEGs) in GDM using a bioinformatics approach to elucidate their molecular pathogenesis. GDM associated expression profiling by high throughput sequencing dataset (GSE154377) was obtained from Gene Expression Omnibus (GEO) database including 28 normal pregnancy samples and 33 GDM samples. DEGs were identified using DESeq2. The gene ontology (GO) and REACTOME pathway enrichments of DEGs were performed by g:Profiler. Protein-protein interaction (PPI) networks were assembled with Cytoscape software and separated into modules using the PEWCC1 algorithm. MiRNA-hub gene regulatory network and TF-hub gene regulatory network were performed with the miRNet database and NetworkAnalyst database. Receiver Operating Characteristic (ROC) analyses was conducted to validate the hub genes. A total of 953 DEGs were identified, of which 478 DEGs were up regulated and 475 DEGs were down regulated. Furthermore, GO and REACTOME pathway enrichment analysis demonstrated that these DEGs were mainly enriched in multicellular organismal process, cell activation, formation of the cornified envelope and hemostasis. TRIM54, ELAVL2, PTN, KIT, BMPR1B, APP, SRC, ITGA4, RPA1 and ACTB were identified as key genes in the PPI network, miRNA-hub gene regulatory network and TF-hub gene regulatory network. TRIM54, ELAVL2, PTN, KIT, BMPR1B, APP, SRC, ITGA4, RPA1 and ACTB in GDM were validated using ROC analysis. This investigation provides further insights into the molecular pathogenesis of GDM, which might facilitate the diagnosis and treatment of GDM.


2021 ◽  
Author(s):  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad

To provide a better understanding of dementia at the molecular level, this study aimed to identify the genes and key pathways associated with dementia by using integrated bioinformatics analysis. Based on the expression profiling by high throughput sequencing dataset GSE153960 derived from the Gene Expression Omnibus (GEO), the differentially expressed genes (DEGs) between patients with dementia and healthy controls were identified. With DEGs, we performed a series of functional enrichment analyses. Then, a protein protein interaction (PPI) network, modules, miRNA hub gene regulatory network and TF hub gene regulatory network was constructed, analyzed and visualized, with which the hub genes miRNAs and TFs nodes were screened out. Finally, validation of hub genes was performed by using receiver operating characteristic curve (ROC) analysis and RT PCR. A total of 948 DEGs were screened out, among which 475 genes were up regulated; while 473 were down regulated. Functional enrichment analyses indicated that DEGs were mainly involved in defense response, ion transport, neutrophil degranulation and neuronal system. The hub genes (CDK1, TOP2A, MAD2L1, RSL24D1, CDKN1A, NOTCH3, MYB, PWP2, WNT7B and HSPA12B) were identified from PPI network, modules, miRNA hub gene regulatory network and TF hub gene regulatory network. We identified a series of key genes along with the pathways that were most closely related with dementia initiation and progression. Our results provide a more detailed molecular mechanism for the advancement of dementia, shedding light on the potential biomarkers and therapeutic targets.


2021 ◽  
Author(s):  
Varun Alur ◽  
Varshita Raju ◽  
Basavaraj Mallikarjunayya Vastrad ◽  
Chanabasayya Mallikarjunayya Vastrad ◽  
Shivakumar Kotturshetti

Type 2 diabetes mellitus (T2DM) is the most common endocrine disorder which poses a serious threat to human health. This investigation aimed to screen the candidate genes differentially expressed in T2DM by bioinformatics analysis. The expression profiling by high throughput sequencing of GSE81608 dataset was retrieved from the gene expression omnibus (GEO) database and analyzed to identify the differentially expressed genes (DEGs) between T2DM and normal controls. Then, Gene Ontology (GO) and pathway enrichment analysis, protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network construction and TF-hub gene regulatory network construction, and topological analysis were performed. Receiver operating characteristic curve (ROC) analysis was also performed to verify the diagnostics value and expression of identified hub genes. A total of 927 DEGs (461 were up regulated and 466 down regulated genes) were identified in T2DM. GO and REACTOME results showed that DEGs mainly enriched in protein metabolic process, establishment of localization, metabolism of proteins and metabolism. The top centrality hub genes APP, MYH9, TCTN2, USP7, SYNPO, GRB2, HSP90AB1, UBC, HSPA5 and SQSTM1 were screened out as the critical genes among the DEGs from the PPI network, modules, miRNA-hub gene regulatory network construction and TF-hub gene regulatory network. ROC analysis provide diagnostics value of hub genes. This study identified key genes, signal pathways and therapeutic agents, which might help us, improve our understanding of the mechanisms of HGPS and identify some new therapeutic agents for T2DM.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Cong Zhang ◽  
Chunrui Bo ◽  
Lunhua Guo ◽  
Pingyang Yu ◽  
Susheng Miao ◽  
...  

Abstract Background The morbidity of thyroid carcinoma has been rising worldwide and increasing faster than any other cancer type. The most common subtype with the best prognosis is papillary thyroid cancer (PTC); however, the exact molecular pathogenesis of PTC is still not completely understood. Methods In the current study, 3 gene expression datasets (GSE3678, GSE3467, and GSE33630) and 2 miRNA expression datasets (GSE113629 and GSE73182) of PTC were selected from the Gene Expression Omnibus (GEO) database and were further used to identify differentially expressed genes (DEGs) and deregulated miRNAs between normal thyroid tissue samples and PTC samples. Then, Gene Ontology (GO) and pathway enrichment analyses were conducted, and a protein-protein interaction (PPI) network was constructed to explore the potential mechanism of PTC carcinogenesis. The hub gene detection was performed using the CentiScaPe v2.0 plugin, and significant modules were discovered using the MCODE plugin for Cytoscape. In addition, a miRNA-gene regulatory network in PTC was constructed using common deregulated miRNAs and DEGs. Results A total of 263 common DEGs and 12 common deregulated miRNAs were identified. Then, 6 significant KEGG pathways (P < 0.05) and 82 significant GO terms were found to be enriched, indicating that PTC was closely related to amino acid metabolism, development, immune system, and endocrine system. In addition, by constructing a PPI network and miRNA-gene regulatory network, we found that hsa-miR-181a-5p regulated the most DEGs, while BCL2 was targeted by the most miRNAs. Conclusions The results of this study suggested that hsa-miR-181a-5p and BCL2 and their regulatory networks may play important roles in the pathogenesis of PTC.


Diagnostics ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 39
Author(s):  
◽  
Chanabasayya Vastrad ◽  
◽  

: Epithelial ovarian cancer (EOC) is the18th most common cancer worldwide and the 8th most common in women. The aim of this study was to diagnose the potential importance of, as well as novel genes linked with, EOC and to provide valid biological information for further research. The gene expression profiles of E-MTAB-3706 which contained four high-grade ovarian epithelial cancer samples, four normal fallopian tube samples and four normal ovarian epithelium samples were downloaded from the ArrayExpress database. Pathway enrichment and Gene Ontology (GO) enrichment analysis of differentially expressed genes (DEGs) were performed, and protein-protein interaction (PPI) network, microRNA-target gene regulatory network and TFs (transcription factors ) -target gene regulatory network for up- and down-regulated were analyzed using Cytoscape. In total, 552 DEGs were found, including 276 up-regulated and 276 down-regulated DEGs. Pathway enrichment analysis demonstrated that most DEGs were significantly enriched in chemical carcinogenesis, urea cycle, cell adhesion molecules and creatine biosynthesis. GO enrichment analysis showed that most DEGs were significantly enriched in translation, nucleosome, extracellular matrix organization and extracellular matrix. From protein-protein interaction network (PPI) analysis, modules, microRNA-target gene regulatory network and TFs-target gene regulatory network for up- and down-regulated, and the top hub genes such as E2F4, SRPK2, A2M, CDH1, MAP1LC3A, UCHL1, HLA-C (major histocompatibility complex, class I, C) , VAT1, ECM1 and SNRPN (small nuclear ribonucleoprotein polypeptide N) were associated in pathogenesis of EOC. The high expression levels of the hub genes such as CEBPD (CCAAT enhancer binding protein delta) and MID2 in stages 3 and 4 were validated in the TCGA (The Cancer Genome Atlas) database. CEBPD andMID2 were associated with the worst overall survival rates in EOC. In conclusion, the current study diagnosed DEGs between normal and EOC samples, which could improve our understanding of the molecular mechanisms in the progression of EOC. These new key biomarkers might be used as therapeutic targets for EOC.


Sign in / Sign up

Export Citation Format

Share Document