scholarly journals Joint inference of adaptive and demographic history from temporal population genomic data

2021 ◽  
Author(s):  
Vitor A. C. Pavinato ◽  
Stéphane De Mita ◽  
Jean-Michel Marin ◽  
Miguel de Navascués

AbstractDisentangling the effects of selection and drift is a long-standing problem in population genetics. Theoretical works based on simulations show that the signal of selection may bias demographic inference when it is pervasive. Ideally, interactions between selection and demography should be considered in the estimation of parameters of demographic and adaptive models. One potential approach is to co-estimate demography and selection parameters using simulation-based likelihood-free methods such as Approximate Bayesian Computation (ABC). We propose a framework based on ABC via Random Forests to jointly infer demographic and selection parameters from temporal population genomic data (e.g. experimental evolution, monitored populations, ancient DNA). The proposed framework allows the separation of demography (census size,N) from genetic drift (effective population size,Ne) and the estimation of the genome-wide effect of selection as the scale mutation rate of beneficial mutations (θb). We applied this approach to a dataset of feral populations ofApis melliferacollected in California, and we estimated parameters consistent with the biology and the recent history of this species.

Author(s):  
Jesper Svedberg ◽  
Vladimir Shchur ◽  
Solomon Reinman ◽  
Rasmus Nielsen ◽  
Russell Corbett-Detig

AbstractAdaptive introgression - the flow of adaptive genetic variation between species or populations - has attracted significant interest in recent years and it has been implicated in a number of cases of adaptation, from pesticide resistance and immunity, to local adaptation. Despite this, methods for identification of adaptive introgression from population genomic data are lacking. Here, we present Ancestry_HMM-S, a Hidden Markov Model based method for identifying genes undergoing adaptive introgression and quantifying the strength of selection acting on them. Through extensive validation, we show that this method performs well on moderately sized datasets for realistic population and selection parameters. We apply Ancestry_HMM-S to a dataset of an admixed Drosophila melanogaster population from South Africa and we identify 17 loci which show signatures of adaptive introgression, four of which have previously been shown to confer resistance to insecticides. Ancestry_HMM-S provides a powerful method for inferring adaptive introgression in datasets that are typically collected when studying admixed populations. This method will enable powerful insights into the genetic consequences of admixture across diverse populations. Ancestry_HMM-S can be downloaded from https://github.com/jesvedberg/Ancestry_HMM-S/.


2018 ◽  
Author(s):  
Andrew M. Sackman ◽  
Rebecca Harris ◽  
Jeffrey D. Jensen

AbstractThe recent increase in time-series population genomic data from experimental, natural, and ancient populations has been accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However, these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny number, may be best characterized by multiple-merger coalescent models. Estimation of population genetic parameters under Wright-Fisher assumptions for these organisms may thus be prone to serious mis-inference. We propose a novel method for the joint inference of demography and selection under the Ψ-coalescent model, termed Multiple-Merger Coalescent Approximate Bayesian Computation, or MMC-ABC. We first quantify mis-inference under the Kingman and then demonstrate the superior performance of MMC-ABC under conditions of skewed offspring distribution. In order to highlight the utility of this approach, we re-analyzed previously published drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew inherent to viral replication and identified putative drug-resistance mutations.


Genetics ◽  
2019 ◽  
Vol 211 (3) ◽  
pp. 1019-1028 ◽  
Author(s):  
Andrew M. Sackman ◽  
Rebecca B. Harris ◽  
Jeffrey D. Jensen

The recent increase in time-series population genomic data from experimental, natural, and ancient populations has been accompanied by a promising growth in methodologies for inferring demographic and selective parameters from such data. However, these methods have largely presumed that the populations of interest are well-described by the Kingman coalescent. In reality, many groups of organisms, including viruses, marine organisms, and some plants, protists, and fungi, typified by high variance in progeny number, may be best characterized by multiple-merger coalescent models. Estimation of population genetic parameters under Wright-Fisher assumptions for these organisms may thus be prone to serious mis-inference. We propose a novel method for the joint inference of demography and selection under the Ψ-coalescent model, termed Multiple-Merger Coalescent Approximate Bayesian Computation, or MMC-ABC. We first demonstrate mis-inference under the Kingman, and then exhibit the superior performance of MMC-ABC under conditions of skewed offspring distributions. In order to highlight the utility of this approach, we reanalyzed previously published drug-selection lines of influenza A virus. We jointly inferred the extent of progeny-skew inherent to viral replication and identified putative drug-resistance mutations.


2020 ◽  
Vol 13 (10) ◽  
pp. 2821-2835
Author(s):  
Lei Chen ◽  
Jing‐Tao Sun ◽  
Peng‐Yu Jin ◽  
Ary A. Hoffmann ◽  
Xiao‐Li Bing ◽  
...  

Genetics ◽  
2003 ◽  
Vol 164 (4) ◽  
pp. 1511-1518 ◽  
Author(s):  
Ning Yu ◽  
Michael I Jensen-Seaman ◽  
Leona Chemnick ◽  
Judith R Kidd ◽  
Amos S Deinard ◽  
...  

Abstract Comparison of the levels of nucleotide diversity in humans and apes may provide much insight into the mechanisms of maintenance of DNA polymorphism and the demographic history of these organisms. In the past, abundant mitochondrial DNA (mtDNA) polymorphism data indicated that nucleotide diversity (π) is more than threefold higher in chimpanzees than in humans. Furthermore, it has recently been claimed, on the basis of limited data, that this is also true for nuclear DNA. In this study we sequenced 50 noncoding, nonrepetitive DNA segments randomly chosen from the nuclear genome in 9 bonobos and 17 chimpanzees. Surprisingly, the π value for bonobos is only 0.078%, even somewhat lower than that (0.088%) for humans for the same 50 segments. The π values are 0.092, 0.130, and 0.082% for East, Central, and West African chimpanzees, respectively, and 0.132% for all chimpanzees. These values are similar to or at most only 1.5 times higher than that for humans. The much larger difference in mtDNA diversity than in nuclear DNA diversity between humans and chimpanzees is puzzling. We speculate that it is due mainly to a reduction in effective population size (Ne) in the human lineage after the human-chimpanzee divergence, because a reduction in Ne has a stronger effect on mtDNA diversity than on nuclear DNA diversity.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


2019 ◽  
Author(s):  
Aude Saint Pierre ◽  
Joanna Giemza ◽  
Matilde Karakachoff ◽  
Isabel Alves ◽  
Philippe Amouyel ◽  
...  

ABSTRACTThe study of the genetic structure of different countries within Europe has provided significant insights into their demographic history and their actual stratification. Although France occupies a particular location at the end of the European peninsula and at the crossroads of migration routes, few population genetic studies have been conducted so far with genome-wide data. In this study, we analyzed SNP-chip genetic data from 2 184 individuals born in France who were enrolled in two independent population cohorts. Using FineStructure, six different genetic clusters of individuals were found that were very consistent between the two cohorts. These clusters match extremely well the geography and overlap with historical and linguistic divisions of France. By modeling the relationship between genetics and geography using EEMS software, we were able to detect gene flow barriers that are similar in the two cohorts and corresponds to major French rivers or mountains. Estimations of effective population sizes using IBDNe program also revealed very similar patterns in both cohorts with a rapid increase of effective population sizes over the last 150 generations similar to what was observed in other European countries. A marked bottleneck is also consistently seen in the two datasets starting in the fourteenth century when the Black Death raged in Europe. In conclusion, by performing the first exhaustive study of the genetic structure of France, we fill a gap in the genetic studies in Europe that would be useful to medical geneticists but also historians and archeologists.


Author(s):  
Pierre Lesturgie ◽  
Serge Planes ◽  
Stefano Mona

Dispersal abilities play a crucial role in shaping the extent of population genetic structure, with more mobile species being panmictic over large geographic ranges and less mobile ones organized in meta-populations exchanging migrants to different degrees. In turn, population structure directly influences the coalescence pattern of the sampled lineages, but the consequences on the estimated variation of the effective population size (Ne) over time obtained by means of unstructured demographic models remain poorly understood. However, this knowledge is crucial for biologically interpreting the observed Ne trajectory and further devising conservation strategies in endangered species. Here we investigated the demographic history of four shark species (Carharhinus melanopterus, Carharhinus limbatus, Carharhinus amblyrhynchos, Galeocerdo cuvier) with different degrees of endangered status and life history traits related to dispersal distributed in the Indo-Pacific and sampled off New Caledonia. We compared several evolutionary scenarios representing both structured (meta-population) and unstructured models and then inferred the Ne variation through time. By performing extensive coalescent simulations, we provided a general framework relating the underlying population structure and the observed Ne dynamics. On this basis, we concluded that the recent decline observed in three out of the four considered species when assuming unstructured demographic models can be explained by the presence of population structure. Furthermore, we also demonstrated the limits of the inferences based on the sole site frequency spectrum and warn that statistics based on linkage disequilibrium will be needed to exclude recent demographic events affecting meta-populations.


2019 ◽  
Author(s):  
Quentin Rougemont ◽  
Jean-Sébastien Moore ◽  
Thibault Leroy ◽  
Eric Normandeau ◽  
Eric B. Rondeau ◽  
...  

AbstractA thorough reconstruction of historical processes is essential for a comprehensive understanding the mechanisms shaping patterns of genetic diversity. Indeed, past and current conditions influencing effective population size have important evolutionary implications for the efficacy of selection, increased accumulation of deleterious mutations, and loss of adaptive potential. Here, we gather extensive genome-wide data that represent the extant diversity of the Coho salmon (Oncorhynchus kisutch) to address two objectives. We demonstrate that a single glacial refugium is the source of most of the present-day genetic diversity, with detectable inputs from a putative secondary micro-refugium. We found statistical support for a scenario whereby ancestral populations located south of the ice sheets expanded in postglacial time, swamping out most of the diversity from other putative micro-refugia. Demographic inferences revealed that genetic diversity was also affected by linked selection in large parts of the genome. Moreover, we demonstrate that the recent demographic history of this species generated regional differences in the load of deleterious mutations among populations, a finding that mirrors recent results from human populations and provides increased support for models of expansion load. We propose that insights from these historical inferences should be better integrated in conservation planning of wild organisms, which currently focuses largely on neutral genetic diversity and local adaptation, with the role of potentially maladaptive variation being generally ignored.


Sign in / Sign up

Export Citation Format

Share Document