scholarly journals Gel-like inclusions of C-terminal fragments of TDP-43 sequester and inhibit proteasomes in neurons

2021 ◽  
Author(s):  
Henrick Riemenschneider ◽  
Qiang Guo ◽  
Jakob Bader ◽  
Frederic Frottin ◽  
Daniel Farny ◽  
...  

TDP-43 inclusions enriched in C-terminal fragments of ~25kDa ("TDP-25") are associated with neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here, we analyzed gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics and functional assays. TDP-25 inclusions are amorphous with gel-like biophysical properties and sequester proteasomes adopting exclusively substrate-processing conformations. This leads to proteostasis impairment, further enhanced by pathogenic mutations. These findings bolster the importance of proteasome dysfunction in ALS/FTD.

Cells ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 249
Author(s):  
Mehdi Ghasemi ◽  
Kiandokht Keyhanian ◽  
Catherine Douthwright

Since the discovery of the chromosome 9 open reading frame 72 (C9orf72) repeat expansion mutation in 2011 as the most common genetic abnormality in amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig’s disease) and frontotemporal dementia (FTD), progress in understanding the signaling pathways related to this mutation can only be described as intriguing. Two major theories have been suggested—(i) loss of function or haploinsufficiency and (ii) toxic gain of function from either C9orf72 repeat RNA or dipeptide repeat proteins (DPRs) generated from repeat-associated non-ATG (RAN) translation. Each theory has provided various signaling pathways that potentially participate in the disease progression. Dysregulation of the immune system, particularly glial cell dysfunction (mainly microglia and astrocytes), is demonstrated to play a pivotal role in both loss and gain of function theories of C9orf72 pathogenesis. In this review, we discuss the pathogenic roles of glial cells in C9orf72 ALS/FTD as evidenced by pre-clinical and clinical studies showing the presence of gliosis in C9orf72 ALS/FTD, pathologic hallmarks in glial cells, including TAR DNA-binding protein 43 (TDP-43) and p62 aggregates, and toxicity of C9orf72 glial cells. A better understanding of these pathways can provide new insights into the development of therapies targeting glial cell abnormalities in C9orf72 ALS/FTD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Joanne L. Sharpe ◽  
Nikki S. Harper ◽  
Duncan R. Garner ◽  
Ryan J. H. West

An intronic hexanucleotide (GGGGCC) expansion in the C9orf72 gene is the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). In the decade following its discovery, much progress has been made in enhancing our understanding of how it precipitates disease. Both loss of function caused by reduced C9orf72 transcript levels, and gain of function mechanisms, triggered by the production of repetitive sense and antisense RNA and dipeptide repeat proteins, are thought to contribute to the toxicity. Drosophila models, with their unrivaled genetic tractability and short lifespan, have played a key role in developing our understanding of C9orf72-related FTD/ALS. There is no C9orf72 homolog in fly, and although this precludes investigations into loss of function toxicity, it is useful for elucidating mechanisms underpinning gain of function toxicity. To date there are a range of Drosophila C9orf72 models, encompassing different aspects of gain of function toxicity. In addition to pure repeat transgenes, which produce both repeat RNA and dipeptide repeat proteins (DPRs), RNA only models and DPR models have been generated to unpick the individual contributions of RNA and each dipeptide repeat protein to C9orf72 toxicity. In this review, we discuss how Drosophila models have shaped our understanding of C9orf72 gain of function toxicity, and address opportunities to utilize these models for further research.


2017 ◽  
Vol 372 ◽  
pp. 444-446 ◽  
Author(s):  
Hiroaki Yaguchi ◽  
Akiko Takeuchi ◽  
Kazuhiro Horiuchi ◽  
Ikuko Takahashi ◽  
Shinnichi Shirai ◽  
...  

2014 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
Ricardo Nitrini

ABSTRACT The occurrence of dementia in amyotrophic lateral sclerosis (ALS) was only widely recognized in the late 20th century. Hitherto, it was believed that dementia was a rare event due to the fortuitous association with other diseases. In 1924, Kostantin Nikolaevich Tretiakoff and Moacyr de Freitas Amorim reported a case of dementia with features of frontotemporal dementia (FTD) that preceded the motor signs of ALS. Neuropathological examination confirmed ALS and found no signs of other dementia-causing diseases. The authors hypothesized that dementia was part of ALS and recommended the search for signs of involvement of motor neurons in cases of dementia with an ill-defined clinical picture, a practice currently accepted in the investigation of cases of FTD. This was one of the first descriptions of dementia preceding the motor impairments of ALS and was published in Portuguese and French in Memórias do Hospício de Juquery.


2021 ◽  
Vol 5 (3) ◽  
pp. e202101185
Author(s):  
Irene Riera-Tur ◽  
Tillman Schäfer ◽  
Daniel Hornburg ◽  
Archana Mishra ◽  
Miguel da Silva Padilha ◽  
...  

The autophagy-lysosomal pathway is impaired in many neurodegenerative diseases characterized by protein aggregation, but the link between aggregation and lysosomal dysfunction remains poorly understood. Here, we combine cryo-electron tomography, proteomics, and cell biology studies to investigate the effects of protein aggregates in primary neurons. We use artificial amyloid-like β-sheet proteins (β proteins) to focus on the gain-of-function aspect of aggregation. These proteins form fibrillar aggregates and cause neurotoxicity. We show that late stages of autophagy are impaired by the aggregates, resulting in lysosomal alterations reminiscent of lysosomal storage disorders. Mechanistically, β proteins interact with and sequester AP-3 μ1, a subunit of the AP-3 adaptor complex involved in protein trafficking to lysosomal organelles. This leads to destabilization of the AP-3 complex, missorting of AP-3 cargo, and lysosomal defects. Restoring AP-3μ1 expression ameliorates neurotoxicity caused by β proteins. Altogether, our results highlight the link between protein aggregation, lysosomal impairments, and neurotoxicity.


2021 ◽  
Vol 14 ◽  
Author(s):  
Elise Liu ◽  
Léa Karpf ◽  
Delphine Bohl

Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.


2018 ◽  
Vol 24 (8) ◽  
pp. 1136-1142 ◽  
Author(s):  
Yong-Jie Zhang ◽  
Tania F. Gendron ◽  
Mark T. W. Ebbert ◽  
Aliesha D. O’Raw ◽  
Mei Yue ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document