scholarly journals Whole genome resequencing data enables a targeted SNP panel for conservation and aquaculture of Oreochromis cichlid fishes

2021 ◽  
Author(s):  
Adam Ciezarek ◽  
Antonia Ford ◽  
Graham Etherington ◽  
Kasozi Nasser ◽  
Milan Malinsky ◽  
...  

Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industry. Non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species. However, many species are difficult to distinguish morphologically, hampering attempts to maintain good quality farmed strains or to identify pure populations of native species. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity and helping to conserve unique endemic biodiversity, and in addition potentially for assessing broodstock purity in hatcheries.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guojia Ma ◽  
Qijian Song ◽  
William R. Underwood ◽  
Zhiwei Zhang ◽  
Jason D. Fiedler ◽  
...  

Abstract Sunflower (Helianthus annuus L.) production is challenged by different biotic and abiotic stresses, among which downy mildew (DM) is a severe biotic stress that is detrimental to sunflower yield and quality in many sunflower-growing regions worldwide. Resistance against its infestation in sunflower is commonly regulated by single dominant genes. Pl17 and Pl19 are two broad-spectrum DM resistance genes that have been previously mapped to a gene cluster spanning a 3.2 Mb region at the upper end of sunflower chromosome 4. Using a whole-genome resequencing approach combined with a reference sequence-based chromosome walking strategy and high-density mapping populations, we narrowed down Pl17 to a 15-kb region flanked by SNP markers C4_5711524 and SPB0001. A prospective candidate gene HanXRQChr04g0095641 for Pl17 was identified, encoding a typical TNL resistance gene protein. Pl19 was delimited to a 35-kb region and was approximately 1 Mb away from Pl17, flanked by SNP markers C4_6676629 and C4_6711381. The only gene present within the delineated Pl19 locus in the reference genome, HanXRQChr04g0095951, was predicted to encode an RNA methyltransferase family protein. Six and eight SNP markers diagnostic for Pl17 and Pl19, respectively, were identified upon evaluation of 96 diverse sunflower lines, providing a very useful tool for marker-assisted selection in sunflower breeding programs.


2021 ◽  
Author(s):  
Huaxing Zhou ◽  
Tingshuang Pan ◽  
Huan Wang ◽  
He Jiang ◽  
Jun Ling ◽  
...  

Abstract The whole genome resequencing was used to develop single nucleotide polymorphisms (SNP) markers for the yellow catfish (Tachysurus fulvidraco). A total of 46 SNP markers were selected from 5550676 genotyping markers which distributed on 26 chromosomes. Of the 46 SNPs analyzed, 35 SNPs conformed to Hardy-Weinberg equilibrium. The observed and expected heterozygosity of these markers ranged from 0.2519 to 0.771 and from 0.265 to 0.5018, respectively. This set of markers will be of great useful for population genetics of the yellow catfish.


2020 ◽  
Vol 61 (2) ◽  
pp. 347-357
Author(s):  
Jewel Howlader ◽  
Yeji Hong ◽  
Sathishkumar Natarajan ◽  
Kanij Rukshana Sumi ◽  
Hoy-Taek Kim ◽  
...  

2015 ◽  
Vol 38 (5) ◽  
pp. 466-473 ◽  
Author(s):  
Jung-Woo Choi ◽  
Bong-Hwan Choi ◽  
Seung-Hwan Lee ◽  
Seung-Soo Lee ◽  
Hyeong-Cheol Kim ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Tu ◽  
Mengqin Duan ◽  
Wenli Liu ◽  
Na Lu ◽  
Yue Zhou ◽  
...  

AbstractWe present a user-friendly and transferable genome-wide DNA G-quadruplex (G4) profiling method that identifies G4 structures from ordinary whole-genome resequencing data by seizing the slight fluctuation of sequencing quality. In the human genome, 736,689 G4 structures were identified, of which 45.9% of all predicted canonical G4-forming sequences were characterized. Over 89% of the detected canonical G4s were also identified by combining polymerase stop assays with next-generation sequencing. Testing using public datasets of 6 species demonstrated that the present method is widely applicable. The detection rates of predicted canonical quadruplexes ranged from 32% to 58%. Because single nucleotide variations (SNVs) influence the formation of G4 structures and have individual differences, the given method is available to identify and characterize G4s genome-wide for specific individuals.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009705
Author(s):  
Masatoshi Nakamoto ◽  
Tsubasa Uchino ◽  
Eriko Koshimizu ◽  
Yudai Kuchiishi ◽  
Ryota Sekiguchi ◽  
...  

Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.


2021 ◽  
Author(s):  
Jing Tu ◽  
Mengqin Duan ◽  
Wenli Liu ◽  
Na Lu ◽  
Xiao Sun ◽  
...  

Abstract We present a convenient genome-wide DNA G-quadruplex (G4) profiling method that identifies G4 structures from ordinary whole-genome resequencing data by seizing the slight fluctuation of sequencing quality. We identified 736,689 G4 structures within human genome, in which 44.9% of all predicted canonical G4-froming sequences were contained. We observed that some of the single nucleotide variations (SNVs) influenced the formation of G4 structures, including homozygous SNVs and heterozygous SNVs. Due to SNVs contain individual differences, the given approach is available to identify and characterize G4s genome-wide for specific individuals.


Author(s):  
Atal Saha ◽  
Anastasia Andersson ◽  
Sara Kurland ◽  
Naomi Keehnen ◽  
Verena Esther Kutschera ◽  
...  

The sympatric existence of genetically distinct populations of the same species remains a puzzle in ecology. Coexisting salmonid fish populations are known from over 100 freshwater lakes. Most studies of sympatric populations have used limited numbers of genetic markers making it unclear if genetic divergence involves only certain parts of the genome. We return to the first reported case of salmonid sympatry, initially detected through contrasting homozygosity at a single allozyme locus (lactate dehydrogenase, LDH-A1) in brown trout in the small Lakes Bunnersjöarna, central Sweden. We use DNA from samples collected in the 1970s and a 96 SNP fluidigm array to verify the existence of the coexisting demes. We then apply whole-genome resequencing of pooled DNA to explore genome-wide diversity within and between these demes; strong genetic divergence is observed with genome-wide FST=0.13. Nucleotide diversity is estimated to 0.0013 in Deme I but only 0.0005 in Deme II. Individual whole-genome resequencing of two individuals per deme suggests considerably higher inbreeding in Deme II vs. Deme I. Comparing with similar data from other lakes we find that the genome-wide divergence between the demes is similar to that between reproductively isolated populations. We located two genes for LDH-A and found divergence between the demes in a regulatory section of one of the genes, but we could not find a perfect fit between allozyme and sequence data. Our data demonstrate genome-wide divergence governed by genetic drift and diversifying selection, confirming reproductive isolation between the sympatric demes.


Sign in / Sign up

Export Citation Format

Share Document