scholarly journals Genome-wide association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-genome resequencing data

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile
PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009705
Author(s):  
Masatoshi Nakamoto ◽  
Tsubasa Uchino ◽  
Eriko Koshimizu ◽  
Yudai Kuchiishi ◽  
Ryota Sekiguchi ◽  
...  

Whole-genome duplication and genome compaction are thought to have played important roles in teleost fish evolution. Ayu (or sweetfish), Plecoglossus altivelis, belongs to the superorder Stomiati, order Osmeriformes. Stomiati is phylogenetically classified as sister taxa of Neoteleostei. Thus, ayu holds an important position in the fish tree of life. Although ayu is economically important for the food industry and recreational fishing in Japan, few genomic resources are available for this species. To address this problem, we produced a draft genome sequence of ayu by whole-genome shotgun sequencing and constructed linkage maps using a genotyping-by-sequencing approach. Syntenic analyses of ayu and other teleost fish provided information about chromosomal rearrangements during the divergence of Stomiati, Protacanthopterygii and Neoteleostei. The size of the ayu genome indicates that genome compaction occurred after the divergence of the family Osmeridae. Ayu has an XX/XY sex-determination system for which we identified sex-associated loci by a genome-wide association study by genotyping-by-sequencing and whole-genome resequencing using wild populations. Genome-wide association mapping using wild ayu populations revealed three sex-linked scaffolds (total, 2.03 Mb). Comparison of whole-genome resequencing mapping coverage between males and females identified male-specific regions in sex-linked scaffolds. A duplicate copy of the anti-Müllerian hormone type-II receptor gene (amhr2bY) was found within these male-specific regions, distinct from the autosomal copy of amhr2. Expression of the Y-linked amhr2 gene was male-specific in sox9b-positive somatic cells surrounding germ cells in undifferentiated gonads, whereas autosomal amhr2 transcripts were detected in somatic cells in sexually undifferentiated gonads of both genetic males and females. Loss-of-function mutation for amhr2bY induced male to female sex reversal. Taken together with the known role of Amh and Amhr2 in sex differentiation, these results indicate that the paralog of amhr2 on the ayu Y chromosome determines genetic sex, and the male-specific amh-amhr2 pathway is critical for testicular differentiation in ayu.


2019 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on the stem by 29 mm . A single gene (Glyma.01g048000) resided in the same LD block as the peak SNP, but it is of unknown function. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Chr01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. These results suggest that this region harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2020 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Background: Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. Results: In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on the stem by 29 mm . A single gene (Glyma.01g048000) resided in the same LD block as the peak SNP, but it is of unknown function. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Chr01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. Conclusion: These results suggest that the new region on chromosome 1 harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2020 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Background: Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. Results: In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on the stem by 29 mm . A single gene (Glyma.01g048000) resided in the same LD block as the peak SNP, but it is of unknown function. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Chr01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. Conclusion: These results suggest that the new region on chromosome 1 harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2020 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Chr01) where resistant lines had shorter lesions on the stem by 29 mm . A single gene (Glyma.01g048000) resided in the same LD block as the peak SNP, but it is of unknown function. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Chr01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. These results suggest that this region harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2019 ◽  
Author(s):  
Chiheb Boudhrioua ◽  
Maxime Bastien ◽  
Davoud Torkamaneh ◽  
François Belzile

Abstract Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum (Lib.) de Bary, is an important cause of yield loss in soybean. Although many papers have reported different loci contributing to partial resistance, few of these were proved to reproduce the same phenotypic impact in different populations. In this study, we identified a major quantitative trait loci (QTL) associated with resistance to SSR progression on the main stem by using a genome-wide association mapping (GWAM). A population of 127 soybean accessions was genotyped with 1.5M SNPs derived from genotyping-by-sequencing (GBS) and whole-genome sequencing (WGS) ensuring an extensive genome coverage and phenotyped for SSR resistance. SNP-trait association led to discovery of a new QTL on chromosome 1 (Gm01) where resistant lines had shorter lesions on the stem by 29 mm. The impact of this QTL was even more significant in the descendants of a cross between two lines carrying contrasted alleles for Gm01. Individuals carrying the resistance allele developed lesions almost 50% shorter than those bearing the sensitivity allele. These results suggest that this region harbors a promising resistance QTL to SSR that can be used in soybean breeding program.


2021 ◽  
Author(s):  
Adam Ciezarek ◽  
Antonia Ford ◽  
Graham Etherington ◽  
Kasozi Nasser ◽  
Milan Malinsky ◽  
...  

Cichlid fish of the genus Oreochromis form the basis of the global tilapia aquaculture and fisheries industry. Non-native farmed tilapia populations are known to be widely distributed across Africa and to hybridize with native Oreochromis species. However, many species are difficult to distinguish morphologically, hampering attempts to maintain good quality farmed strains or to identify pure populations of native species. Here, we describe the development of a single nucleotide polymorphism (SNP) genotyping panel from whole-genome resequencing data that enables targeted species identification in Tanzania. We demonstrate that an optimized panel of 96 genome-wide SNPs based on FST outliers performs comparably to whole genome resequencing in distinguishing species and identifying hybrids. We also show this panel outperforms microsatellite-based and phenotype-based classification methods. Case studies indicate several locations where introduced aquaculture species have become established in the wild, threatening native Oreochromis species. The novel SNP markers identified here represent an important resource for assessing broodstock purity and helping to conserve unique endemic biodiversity, and in addition potentially for assessing broodstock purity in hatcheries.


2015 ◽  
Vol 38 (5) ◽  
pp. 466-473 ◽  
Author(s):  
Jung-Woo Choi ◽  
Bong-Hwan Choi ◽  
Seung-Hwan Lee ◽  
Seung-Soo Lee ◽  
Hyeong-Cheol Kim ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Tu ◽  
Mengqin Duan ◽  
Wenli Liu ◽  
Na Lu ◽  
Yue Zhou ◽  
...  

AbstractWe present a user-friendly and transferable genome-wide DNA G-quadruplex (G4) profiling method that identifies G4 structures from ordinary whole-genome resequencing data by seizing the slight fluctuation of sequencing quality. In the human genome, 736,689 G4 structures were identified, of which 45.9% of all predicted canonical G4-forming sequences were characterized. Over 89% of the detected canonical G4s were also identified by combining polymerase stop assays with next-generation sequencing. Testing using public datasets of 6 species demonstrated that the present method is widely applicable. The detection rates of predicted canonical quadruplexes ranged from 32% to 58%. Because single nucleotide variations (SNVs) influence the formation of G4 structures and have individual differences, the given method is available to identify and characterize G4s genome-wide for specific individuals.


Sign in / Sign up

Export Citation Format

Share Document