scholarly journals Identification of a new, Rab14-dependent, endo-lysosomal pathway

2021 ◽  
Author(s):  
Evgeniya Trofimenko ◽  
Yuta Homma ◽  
Mitsunori Fukuda ◽  
Christian Widmann

Cells can endocytose material from the surrounding environment. Endocytosis and endosome dynamics are controlled by proteins of the small GTPase Rab family. Several endocytosis pathways have been described (e.g. clathrin-mediated endocytosis, macropinocytosis, CLIC/GEEC pathway). Besides possible recycling routes to the plasma membrane and various organelles, these pathways all appear to funnel the endocytosed material to Rab5-positive early endosomes that then mature into Rab7-positive late endosomes/lysosomes. By studying the uptake of a series of cell-penetrating peptides (CPPs) used in research and clinic, we have discovered a second endocytic pathway that moves material to late endosomes/lysosomes and that is fully independent of Rab5 and Rab7 but requires the Rab14 protein. This newly identified pathway differs from the conventional Rab5-dependent endocytosis at the stage of vesicle formation already and is not affected by a series of compounds that inhibit the Rab5-dependent pathway. The Rab14-dependent pathway is also used by physiological cationic molecules such as polyamines and homeodomains found in homeoproteins. Rab14 is expressed by the last eukaryotic common ancestor. The Rab14-dependent pathway may therefore correspond to a primordial endosomal pathway taken by cationic cargos.

1993 ◽  
Vol 177 (3) ◽  
pp. 583-596 ◽  
Author(s):  
P Romagnoli ◽  
C Layet ◽  
J Yewdell ◽  
O Bakke ◽  
R N Germain

Invariant chain (Ii), which associates with major histocompatibility complex (MHC) class II molecules in the endoplasmic reticulum, contains a targeting signal for transport to intracellular vesicles in the endocytic pathway. The characteristics of the target vesicles and the relationship between Ii structure and class II localization in distinct endosomal subcompartments have not been well defined. We demonstrate here that in transiently transfected COS cells expressing high levels of the p31 or p41 forms of Ii, uncleaved Ii is transported to and accumulates in transferrin-accessible (early) endosomes. Coexpressed MHC class II is also found in this same compartment. These early endosomes show altered morphology and a slower rate of content movement to later parts of the endocytic pathway. At more moderate levels of Ii expression, or after removal of a highly conserved region in the cytoplasmic tail of Ii, coexpressed class II molecules are found primarily in vesicles with the characteristics of late endosomes/prelysosomes. The Ii chains in these late endocytic vesicles have undergone proteolytic cleavage in the lumenal region postulated to control MHC class II peptide binding. These data indicate that the association of class II with Ii results in initial movement to early endosomes. At high levels of Ii expression, egress to later endocytic compartments is delayed and class II-Ii complexes accumulate together with endocytosed material. At lower levels of Ii expression, class II-Ii complexes are found primarily in late endosomes/prelysosomes. These data provide evidence that the route of class II transport to the site of antigen processing and loading involves movement through early endosomes to late endosomes/prelysosomes. Our results also reveal an unexpected ability of intact Ii to modify the structure and function of the early endosomal compartment, which may play a role in regulating this processing pathway.


2003 ◽  
Vol 162 (4) ◽  
pp. 703-717 ◽  
Author(s):  
Peter J. Peters ◽  
Alexander Mironov ◽  
David Peretz ◽  
Elly van Donselaar ◽  
Estelle Leclerc ◽  
...  

To understand the posttranslational conversion of the cellular prion protein (PrPC) to its pathologic conformation, it is important to define the intracellular trafficking pathway of PrPC within the endomembrane system. We studied the localization and internalization of PrPC in CHO cells using cryoimmunogold electron microscopy. At steady state, PrPC was enriched in caveolae both at the TGN and plasma membrane and in interconnecting chains of endocytic caveolae. Protein A–gold particles bound specifically to PrPC on live cells. These complexes were delivered via caveolae to the pericentriolar region and via nonclassical, caveolae-containing early endocytic structures to late endosomes/lysosomes, thereby bypassing the internalization pathway mediated by clathrin-coated vesicles. Endocytosed PrPC-containing caveolae were not directed to the ER and Golgi complex. Uptake of caveolae and degradation of PrPC was slow and sensitive to filipin. This caveolae-dependent endocytic pathway was not observed for several other glycosylphosphatidyl inositol (GPI)-anchored proteins. We propose that this nonclassical endocytic pathway is likely to determine the subcellular location of PrPC conversion.


1992 ◽  
Vol 103 (4) ◽  
pp. 1139-1152
Author(s):  
J.W. Kok ◽  
K. Hoekstra ◽  
S. Eskelinen ◽  
D. Hoekstra

Recycling pathways of the sphingolipid glucosylceramide were studied by employing a fluorescent analog of glucosylceramide, 6(-)[N-(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoylglucosyl sphingosine (C6-NBD-glucosylceramide). Direct recycling of the glycolipid from early endosomes to the plasma membrane occurs, as could be shown after treating the cells with the microtubule-disrupting agent nocodazole, which causes inhibition of the glycolipid's trafficking from peripheral early endosomes to centrally located late endosomes. When the microtubuli are intact, at least part of the glucosylceramide is transported from early to late endosomes together with ricin. Interestingly, also N-(lissamine rhodamine B sulfonyl)phosphatidylethanolamine (N-Rh-PE), a membrane marker of the fluid-phase endocytic pathway, is transported to this endosomal compartment. However, in contrast to both ricin and N-Rh-PE, the glucosylceramide can escape from this organelle and recycle to the plasma membrane. Monensin and brefeldin A have little effect on this recycling pathway, which would exclude extensive involvement of early Golgi compartments in recycling. Hence, the small fraction of the glycolipid that colocalizes with transferrin (Tf) in the Golgi area might directly recycle via the trans-Golgi network. When the intracellular pH was lowered to 5.5, recycling was drastically reduced, in accordance with the impeding effect of low intracellular pH on vesicular transport during endocytosis and in the biosynthetic pathway. Our results thus demonstrate the existence of at least two recycling pathways for glucosylceramide and indicate the relevance of early endosomes in recycling of both proteins and lipids.


1991 ◽  
Vol 112 (2) ◽  
pp. 245-255 ◽  
Author(s):  
J E Park ◽  
J M Lopez ◽  
E B Cluett ◽  
W J Brown

Cells contain an intracellular compartment that serves as both the "prelysosomal" delivery site for newly synthesized lysosomal enzymes by the mannose 6-phosphate (Man6P) receptor and as a station along the endocytic pathway to lysosomes. We have obtained mAbs to a approximately 57-kD membrane glycoprotein, (called here plgp57), found predominantly in this prelysosomal endosome compartment. This conclusion is supported by the following results: (a) plgp57 was primarily found in a population of late endosomes that were located just distal to the 20 degrees C block site in the endocytic pathway to lysosomes (approximately 83% of the prelysosomes were positive for plgp57 but less than 5% of the early endosomes had detectable amounts of this marker); (b) plgp57 and the cation-independent (CI) Man6P receptor were located in many of the same intracellular vesicles; (c) plgp57 was found in the membranes of an acidic compartment; (d) immunoelectron microscopy showed that plgp57 was located in characteristic multilamellar- and multivesicular-type vacuoles believed to be prelysosomal endosomes; and (e) cell fractionation studies demonstrated that plgp57 was predominantly found in low density organelles which comigrated with late endosomes and CI Man6P receptors, and only approximately 10-15% of the antigen was found in high density fractions containing the majority of secondary lysosomes. These results indicate that plgp57 is a novel marker for a unique prelysosomal endosome compartment that is the site of confluence of the endocytic and biosynthetic pathways to lysosomes.


1990 ◽  
Vol 110 (4) ◽  
pp. 1013-1022 ◽  
Author(s):  
D M Ward ◽  
D P Hackenyos ◽  
J Kaplan

Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.


Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1096 ◽  
Author(s):  
Guerra ◽  
Bucci

RAB7 is a small guanosine triphosphatase (GTPase) extensively studied as regulator of vesicular trafficking. Indeed, its role is fundamental in several steps of the late endocytic pathway, including endosome maturation, transport from early endosomes to late endosomes and lysosomes, clustering and fusion of late endosomes and lysosomes in the perinuclear region and lysosomal biogenesis. Besides endocytosis, RAB7 is important for a number of other cellular processes among which, autophagy, apoptosis, signaling, and cell migration. Given the importance of RAB7 in these cellular processes, the interest to study the role of RAB7 in cancer progression is widely grown. Here, we describe the current understanding of oncogenic and oncosuppressor functions of RAB7 analyzing cellular context and other environmental factors in which it elicits pro and/or antitumorigenic effects. We also discuss the role of RAB7 in cisplatin resistance associated with its ability to regulate the late endosomal pathway, lysosomal biogenesis and extracellular vesicle secretion. Finally, we examined the potential cancer therapeutic strategies targeting the different molecular events in which RAB7 is involved.


1993 ◽  
Vol 106 (4) ◽  
pp. 1115-1130 ◽  
Author(s):  
I.D. Burdett

MDCK cells grown in media with normal levels of Ca2+ (approximately 2 mM) contain internalised desmosomes, referred to as desmosome-associated vacuoles (DAVs). The DAVs consist of one to three plaques retained in the plane of a surrounding vacuolar membrane, and their entry into the endocytic pathway has been investigated using HRP, cationized ferritin and BSA/gold in combination with electron microscopy and immunogold labelling of frozen sections. Endocytic tracers supplied from the apical and basolateral surfaces to filter-grown MDCK cells met in a common perinuclear compartment but DAVs were not labelled during short (5-30 minutes) pulses of marker, whether applied apically or basolaterally. Only when the tracers were taken up from the basolateral surface and then chased for periods of 2–18 hours, were DAVs labelled. It is proposed that entry of an endocytic tracer to DAVs occurs by the association of the desmosomal vacuole with late endosomes. Immunolabelling studies with antibodies to desmosomal components (to Dsg, DPI/II), to HRP and to the cation-independent mannose 6-phosphate receptor (MPR), confirmed that Dsg and DPI/II are located within DAVs and late endosomes, but not in early endosomes. Passage of Dsg, but to a lesser extent DPI/II, was detected in MPR- structures (lysosomes). DAV-like structures have also been observed in developing tissues such as mouse kidney. Such engulfment may provide a general mechanism for handling insoluble junctional proteins, particularly where rapid morphogenetic changes are occurring in the pattern of cell-cell adhesion.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Babette C Hammerling ◽  
Melissa Q Cortez ◽  
Rita H Najor ◽  
Åsa B Gustafsson

Functional mitochondria are essential for highly metabolic organs such as the heart. When mitochondria are damaged they can release pro-death factors and reactive oxygen species which in turn can result in cell death. The E3 ubiquitin ligase Parkin plays an important role in clearing damaged mitochondria via the autophagy pathway to protect cells against unnecessary cell death. Interestingly, we have found that Parkin can mediate clearance of damaged mitochondria via an autophagy-independent pathway. In fact, Parkin promotes clearance of depolarized mitochondria at the same rate in both wild-type (WT) and autophagy deficient Atg5-/- mouse embryonic fibroblasts (MEFs) in response to the mitochondrial uncoupler FCCP. We also found that Parkin-mediated ubiquitination is critical for this process as disease associated mutants of Parkin were incapable of inducing mitochondrial clearance in Atg5-/- MEFs. Upon further investigation, we observed a significant increase in the number of Rab5+ early- and Rab7+ late endosomes in both WT and Atg5-/- MEFs after depolarization of mitochondria with FCCP or valinomycin, indicating activation of the endosomal-lysosomal degradation pathway. We did not observe activation of the endosomal pathway after exposure to actinomycin D, an inhibitor RNA synthesis and activator of apoptosis, confirming that mitochondrial damage specifically activates the endosomal degradation pathway. We also observed activation of the endosomal pathway in neonatal myocytes in response to FCCP treatment or after exposure to simulated ischemia/reperfusion (sI/R). Overexpression of the dominant negative Rab5S34N significantly enhanced sI/R-mediated cell death, suggesting that this is a protective pathway activated by cells in response to stress. Moreover, Beclin1 is well known to regulate activation of autophagy. Here, we found that knockdown of Beclin1 inhibited both the number of Rab5+ early endosomes and their colocalization with mitochondria in response to either FCCP or sI/R in myocytes, suggesting that Beclin1 is a critical upstream regulator of the endosomal degradation pathway. Thus, our data suggest that Parkin mediates clearance of damaged mitochondria via both the autophagy and endosomal pathways in cells.


2012 ◽  
Vol 90 (3) ◽  
pp. 449-455 ◽  
Author(s):  
Paula Florian ◽  
Alina Macovei ◽  
Livia Sima ◽  
Norica Nichita ◽  
Inger Mattsby-Baltzer ◽  
...  

Different cell types have been reported to internalize lactoferrin (Lf) by specific or nonspecific receptors. Our studies focused on the endocytic pathway of human Lf in macrophage-like THP-1 cells. Lactoferrin was found to be internalized by THP-1 cells differentiated with phorbol myristate acetate. Incubation of cells with chlorpromazine and dansylcadaverine, inhibitors of clathrin-dependent endocytosis, led to a 50% inhibition of Lf internalization compared with untreated cells. Bafilomycin A1 and NH4Cl treatment also resulted in 40%–60% inhibition, respectively, suggesting that the internalization of Lf may partly be mediated by acidic endosome-like organelles. Endocytic uptake of Lf was also cholesterol-dependent, as shown by methyl-β-cyclodextrin or nystatin treatment of the cells prior to internalization. Partial colocalization of Lf and EEA-1, a marker specific for early endosomes, could be observed. Colocalization of Lf with a specific endoplasmic reticulum marker was also detected. Our results suggest that Lf is internalized mainly by the clathrin-dependent pathway in THP-1 cells and targets the ER. The physiological consequences of this intracellular trafficking will be the subject of future investigations.


2005 ◽  
Vol 16 (6) ◽  
pp. 2809-2821 ◽  
Author(s):  
Tamara Krsmanović ◽  
Agnes Pawelec ◽  
Tobias Sydor ◽  
Ralf Kölling

We present evidence that ubiquitination controls sorting of the ABC-transporter Ste6 in the early endocytic pathway. The intracellular distribution of Ste6 variants with reduced ubiquitination was examined. In contrast to wild-type Ste6, which was mainly localized to internal structures, these variants accumulated at the cell surface in a polar manner. When endocytic recycling was blocked by Ypt6 inactivation, the ubiquitination deficient variants were trapped inside the cell. This indicates that the polar distribution is maintained dynamically through endocytic recycling and localized exocytosis (“kinetic polarization”). Ste6 does not appear to recycle through late endosomes, because recycling was not blocked in class E vps (vacuolar protein sorting) mutants (Δvps4, Δvps27), which are affected in late endosome function and in the retromer mutant Δvps35. Instead, recycling was partially affected in the sorting nexin mutant Δsnx4, which serves as an indication that Ste6 recycles through early endosomes. Enhanced recycling of wild-type Ste6 was observed in class D vps mutants (Δpep12, Δvps8, and Δvps21). The identification of putative recycling signals in Ste6 suggests that recycling is a signal-mediated process. Endocytic recycling and localized exocytosis could be important for Ste6 polarization during the mating process.


Sign in / Sign up

Export Citation Format

Share Document