scholarly journals Temperature-induced reorganisation of Schistocephalus solidus (Cestoda) proteome during the transition to the warm-blooded host

2021 ◽  
Author(s):  
Ekaterina Borvinskaya ◽  
Albina Kochneva ◽  
Polina Drozdova ◽  
Olga Balan ◽  
Victor Zgoda

The protein composition (proteome) of cestode Schistocephalus solidus was measured in an experiment simulating the transition of the parasite from a cold-blooded to a warm-blooded host. Infective S. solidus plerocercoids obtained from the three-spined stickleback Gasterosteus aculeatus were heated at 40 °C for 1 hour or cultured in vitro at 40 °C and 22 °C for 48 hours. In short-term experiment, the content of only one tegument protein was evidenced to decrease after heating. After long-term heating, which triggered parasite sexual maturation, an increase in the content of ribosomal proteins, translation initiation factors and enzymes of the amino acid biosynthesis pathway was observed. The synthesis of certain gene products for carbohydrate metabolism, including glycolysis/gluconeogenesis, was found to be regulated in parasite by temperature.

Biology Open ◽  
2021 ◽  
Vol 10 (11) ◽  
Author(s):  
Ekaterina V. Borvinskaya ◽  
Albina A. Kochneva ◽  
Polina B. Drozdova ◽  
Olga V. Balan ◽  
Victor G. Zgoda

ABSTRACT The protein composition of the cestode Schistocephalus solidus was measured in an experiment simulating the trophic transmission of the parasite from a cold-blooded to a warm-blooded host. The first hour of host colonisation was studied in a model experiment, in which sticklebacks Gasterosteus aculeatus infected with S. solidus were heated at 40°C for 1 h. As a result, a decrease in the content of one tegument protein was detected in the plerocercoids of S. solidus. Sexual maturation of the parasites was initiated in an experiment where S. solidus larvae were taken from fish and cultured in vitro at 40°C for 48 h. Temperature-independent changes in the parasite proteome were investigated by incubating plerocercoids at 22°C for 48 h in culture medium. Analysis of the proteome allowed us to distinguish the temperature-induced genes of S. solidus, as well as to specify the molecular markers of the plerocercoid and adult worms. The main conclusion of the study is that the key enzymes of long-term metabolic changes (glycogen consumption, protein production, etc.) in parasites during colonisation of a warm-blooded host are induced by temperature.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


2020 ◽  
Vol 21 (4) ◽  
pp. 1254 ◽  
Author(s):  
Tomas Masek ◽  
Edgar del Llano ◽  
Lenka Gahurova ◽  
Michal Kubelka ◽  
Andrej Susor ◽  
...  

Meiotic maturation of oocyte relies on pre-synthesised maternal mRNA, the translation of which is highly coordinated in space and time. Here, we provide a detailed polysome profiling protocol that demonstrates a combination of the sucrose gradient ultracentrifugation in small SW55Ti tubes with the qRT-PCR-based quantification of 18S and 28S rRNAs in fractionated polysome profile. This newly optimised method, named Scarce Sample Polysome Profiling (SSP-profiling), is suitable for both scarce and conventional sample sizes and is compatible with downstream RNA-seq to identify polysome associated transcripts. Utilising SSP-profiling we have assayed the translatome of mouse oocytes at the onset of nuclear envelope breakdown (NEBD)—a developmental point, the study of which is important for furthering our understanding of the molecular mechanisms leading to oocyte aneuploidy. Our analyses identified 1847 transcripts with moderate to strong polysome occupancy, including abundantly represented mRNAs encoding mitochondrial and ribosomal proteins, proteasomal components, glycolytic and amino acids synthetic enzymes, proteins involved in cytoskeleton organization plus RNA-binding and translation initiation factors. In addition to transcripts encoding known players of meiotic progression, we also identified several mRNAs encoding proteins of unknown function. Polysome profiles generated using SSP-profiling were more than comparable to those developed using existing conventional approaches, being demonstrably superior in their resolution, reproducibility, versatility, speed of derivation and downstream protocol applicability.


1989 ◽  
Vol 257 (2) ◽  
pp. F177-F181 ◽  
Author(s):  
C. Khadouri ◽  
S. Marsy ◽  
C. Barlet-Bas ◽  
A. Doucet

Because previous studies indicated that in the collecting tubule, N-ethylmaleimide (NEM)-sensitive ATPase, the biochemical equivalent of the proton pump, is controlled by mineralocorticoids in the long term, the present study was designed to investigate whether such control also exists in the short term. Therefore we investigated the in vivo and in vitro effects of aldosterone on the enzyme activity in cortical and outer medullary collecting tubules (CCT and MCT, respectively) from adrenalectomized rats. Administration of aldosterone (10 micrograms/kg body wt) markedly stimulated NEM-sensitive ATPase activity in the CCT and MCT within 3 h. Similarly, incubating CCT or MCT for 3 h in the presence of 10(-8) M aldosterone enhanced NEM-sensitive ATPase activity up to values similar to those previously measured in the corresponding nephron segments of normal rats. In vitro stimulation of NEM-sensitive ATPase was dose dependent in regard to aldosterone (apparent affinity constant approximately 10(-9) M), appeared after a 30-min lag period, and reached its maximum after 2-2.5 h. Finally, actinomycin D and cycloheximide totally abolished the in vitro action of aldosterone, demonstrating the involvement of protein synthesis in this process.


1977 ◽  
Vol 232 (3) ◽  
pp. E336
Author(s):  
J T Pento ◽  
L C Waite ◽  
P J Tracy ◽  
A D Kenny

The role of parathyroid hormone (PTH) in the adaptive response in gut calcium transport to calcium deprivation has been studied in the rat using both the in vitro everted duodenal sac and the in situ ligated duodenal segment technique. Intact or parathyroidectomized (PTX) young rats were placed on a low calcium (0.01%) diet for 7-, 14-, or 21-day adaptation periods and compared with control rats maintained on a high calcium (1.5%) diet. Prior PTX (3 days before the start of the adaptation period) abolished the adaptive response (enhanced calcium transport) induced by calcium deprivation for a 7-day adaptation period, but did not abolish a response after a 21-day period. A 14-day adaptation period gave equivocal results. It is concluded that PTH appears to be necessary for short-term (7-day) adaptation, but not for long-term (21-day) adaptation to calcium deprivation. However, if accessory parathyroid tissue is present, the data could be interpreted differently: the essentiality of PTH for the adaptive response might be independent of the length of the adaptation period. The data also contribute to a possible resolution of the controversy concerning the involvement of PTH in the regulation of intestinal calcium transport in the rat.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Oscar Gil-Castell ◽  
José David Badia ◽  
Jordi Bou ◽  
Amparo Ribes-Greus

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20–30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.


2010 ◽  
Vol 23 (1) ◽  
pp. 47-64 ◽  
Author(s):  
Fátima Martel ◽  
Rosário Monteiro ◽  
Conceição Calhau

Polyphenols are a group of widely distributed phytochemicals present in most foods of vegetable origin. A growing number of biological effects have been attributed to these molecules in the past few years and only recently has their interference with the transport capacity of epithelial barriers received attention. This review will present data obtained concerning the effect of polyphenols upon the transport of some compounds (organic cations, glucose and the vitamins thiamin and folic acid) at the intestinal and placental barriers. Important conclusions can be drawn: (i) different classes of polyphenols affect transport of these bioactive compounds at the intestinal epithelia and the placenta; (ii) different compounds belonging to the same phenolic family often possess opposite effects upon transport of a given molecule; (iii) the acute and chronic/short-term and long-term exposures to polyphenols do not produce parallel results and, therefore, care should be taken when extrapolating results; (iv) the effect of polyphenolics in combination may be very different from the expected ones taking into account the effect of each of these compounds alone, and so care should be taken when speculating on the effect of a drink based on the effect of one component only; (v) care should be taken in drawing conclusions for alcoholic beverages from results obtained with ethanol alone. Although most of the data reviewed in the present paper refer to in vitro experiments with cell-culture systems, these studies raise a concern about possible changes in the bioavailability of substrates upon concomitant ingestion of polyphenols.


Chemosphere ◽  
2016 ◽  
Vol 144 ◽  
pp. 312-318 ◽  
Author(s):  
Fang Wang ◽  
Ulrike Dörfler ◽  
Xin Jiang ◽  
Reiner Schroll

Sign in / Sign up

Export Citation Format

Share Document