scholarly journals Ultra-fast, high throughput and inexpensive detection of SARS-CoV-2 seroconversion

Author(s):  
Marcelo S. Conzentino ◽  
Tatielle P. C. Santos ◽  
Khaled A. Selim ◽  
Berenike Wagner ◽  
Janette T. Alford ◽  
...  

ABSTRACTA technique allowing high throughput, fast and low-cost quantitative analysis of human IgG antibodies reacting to SARS-CoV-2 antigens will be required to understand the levels of protecting antibodies in the population raised in response to infections and/or to immunization. We described previously a fast, simple, and inexpensive Ni2+ magnetic bead immunoassay which allowed detection of human antibodies reacting against the SARS-CoV-2 nucleocapsid protein using a minimal amount of serum or blood. A major drawback of the previously described system was that it only processed 12 samples simultaneously. Here we describe a manually operating inexpensive 96 well plate magnetic extraction / homogenization process which allows high throughput analysis delivering results of 96 samples in chromogenic format in 12 minutes or in fluorescent ultrafast format which takes only 7 minutes. We also show that His tag antigen purification can be performed on the fly while loading antigens to the Ni2+ magnetic beads in a process which takes only 12 min reducing the pre analytical time and cost. Finally, we show that the magnetic bead immunoassay is antigen flexible and can be performed using either Nucleocapsid, Spike or Spike RBD. The method performed with low inter and intra assay variability using different antigens and detection modes and was able to deliver >99.5% specificity and >95% sensitivity for a cohort of 203 pre pandemic and 63 COVID-19 positive samples.

2021 ◽  
Author(s):  
Marcelo dos Santos Conzentino ◽  
Ana C Goncalves ◽  
NIgella M Paula ◽  
Fabiane G Rego ◽  
Dalila Zanette ◽  
...  

Immunological assays to detect SARS-CoV-2 Spike receptor binding domain antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristics curve of 0.94 was obtained. The method operated with>82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty with 85% sensitivity. The IgG signal obtained with the described method was well correlated with the signal obtained when pre fusion Spike produced in HEK cell lines were used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.


Lab on a Chip ◽  
2013 ◽  
Vol 13 (12) ◽  
pp. 2344 ◽  
Author(s):  
Bruno Teste ◽  
Anaïs Ali-Cherif ◽  
Jean Louis Viovy ◽  
Laurent Malaquin

2008 ◽  
Vol 269 (1) ◽  
pp. 111-116 ◽  
Author(s):  
Katleen De Preter ◽  
Björn Menten ◽  
Sara De Brouwer ◽  
Candy Kumps ◽  
Evi Michels ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Diandra S. Hassan ◽  
Christian Wolf

AbstractThe advances of high-throughput experimentation technology and chemometrics have revolutionized the pace of scientific progress and enabled previously inconceivable discoveries, in particular when used in tandem. Here we show that the combination of chirality sensing based on small-molecule optical probes that bind to amines and amino alcohols via dynamic covalent or click chemistries and powerful chemometric tools that achieve orthogonal data fusion and spectral deconvolution yields a streamlined multi-modal sensing protocol that allows analysis of the absolute configuration, enantiomeric composition and concentration of structurally analogous—and therefore particularly challenging—chiral target compounds without laborious and time-consuming physical separation. The practicality, high accuracy, and speed of this approach are demonstrated with complicated quaternary and octonary mixtures of varying chemical and chiral compositions. The advantages over chiral chromatography and other classical methods include operational simplicity, increased speed, reduced waste production, low cost, and compatibility with multiwell plate technology if high-throughput analysis of hundreds of samples is desired.


2003 ◽  
Vol 24 (11) ◽  
pp. 1716-1722 ◽  
Author(s):  
Marek Minarik ◽  
Lucie Minarikova ◽  
Jens Bjørheim ◽  
Per Olaf Ekstrøm

2015 ◽  
Vol 11 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Luciano Cardoso ◽  
Suellen Cordeiro ◽  
Marcio Fronza ◽  
Denise Endringer ◽  
Tadeu de Andrade ◽  
...  

Author(s):  
Ruoxing Lei ◽  
Erin A. Akins ◽  
Kelly C. Y. Wong ◽  
Nicole A. Repina ◽  
Kayla J. Wolf ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Jiawei Qi ◽  
Pinhua Rao ◽  
Lele Wang ◽  
Li Xu ◽  
Yanli Wen ◽  
...  

Pattern recognition, also called “array sensing” is a recognition strategy with a wide and expandable analysis range, based on the high-throughput analysis data. In this work, we constructed a sensor...


Author(s):  
Xiaojia Jiang ◽  
Mingsong Zang ◽  
Fei Li ◽  
Chunxi Hou ◽  
Quan Luo ◽  
...  

Biological nanopore-based techniques have attracted more and more attention recently in the field of single-molecule detection, because they allow the real-time, sensitive, high-throughput analysis. Herein, we report an engineered biological...


Sign in / Sign up

Export Citation Format

Share Document