A low cost and high throughput magnetic bead-based immuno-agglutination assay in confined droplets

Lab on a Chip ◽  
2013 ◽  
Vol 13 (12) ◽  
pp. 2344 ◽  
Author(s):  
Bruno Teste ◽  
Anaïs Ali-Cherif ◽  
Jean Louis Viovy ◽  
Laurent Malaquin

2021 ◽  
Author(s):  
Marcelo S. Conzentino ◽  
Tatielle P. C. Santos ◽  
Khaled A. Selim ◽  
Berenike Wagner ◽  
Janette T. Alford ◽  
...  

ABSTRACTA technique allowing high throughput, fast and low-cost quantitative analysis of human IgG antibodies reacting to SARS-CoV-2 antigens will be required to understand the levels of protecting antibodies in the population raised in response to infections and/or to immunization. We described previously a fast, simple, and inexpensive Ni2+ magnetic bead immunoassay which allowed detection of human antibodies reacting against the SARS-CoV-2 nucleocapsid protein using a minimal amount of serum or blood. A major drawback of the previously described system was that it only processed 12 samples simultaneously. Here we describe a manually operating inexpensive 96 well plate magnetic extraction / homogenization process which allows high throughput analysis delivering results of 96 samples in chromogenic format in 12 minutes or in fluorescent ultrafast format which takes only 7 minutes. We also show that His tag antigen purification can be performed on the fly while loading antigens to the Ni2+ magnetic beads in a process which takes only 12 min reducing the pre analytical time and cost. Finally, we show that the magnetic bead immunoassay is antigen flexible and can be performed using either Nucleocapsid, Spike or Spike RBD. The method performed with low inter and intra assay variability using different antigens and detection modes and was able to deliver >99.5% specificity and >95% sensitivity for a cohort of 203 pre pandemic and 63 COVID-19 positive samples.



2021 ◽  
Author(s):  
Marcelo dos Santos Conzentino ◽  
Ana C Goncalves ◽  
NIgella M Paula ◽  
Fabiane G Rego ◽  
Dalila Zanette ◽  
...  

Immunological assays to detect SARS-CoV-2 Spike receptor binding domain antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristics curve of 0.94 was obtained. The method operated with>82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty with 85% sensitivity. The IgG signal obtained with the described method was well correlated with the signal obtained when pre fusion Spike produced in HEK cell lines were used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Woo Seok Kim ◽  
Sungcheol Hong ◽  
Milenka Gamero ◽  
Vivekanand Jeevakumar ◽  
Clay M. Smithhart ◽  
...  

AbstractThe vagus nerve supports diverse autonomic functions and behaviors important for health and survival. To understand how specific components of the vagus contribute to behaviors and long-term physiological effects, it is critical to modulate their activity with anatomical specificity in awake, freely behaving conditions using reliable methods. Here, we introduce an organ-specific scalable, multimodal, wireless optoelectronic device for precise and chronic optogenetic manipulations in vivo. When combined with an advanced, coil-antenna system and a multiplexing strategy for powering 8 individual homecages using a single RF transmitter, the proposed wireless telemetry enables low cost, high-throughput, and precise functional mapping of peripheral neural circuits, including long-term behavioral and physiological measurements. Deployment of these technologies reveals an unexpected role for stomach, non-stretch vagal sensory fibers in suppressing appetite and demonstrates the durability of the miniature wireless device inside harsh gastric conditions.



Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2910
Author(s):  
Chaoyi Ding ◽  
Chun Liu ◽  
Ligang Zhang ◽  
Di Wu ◽  
Libin Liu

The high cost of development and raw materials have been obstacles to the widespread use of titanium alloys. In the present study, the high-throughput experimental method of diffusion couple combined with CALPHAD calculation was used to design and prepare the low-cost and high-strength Ti-Al-Cr system titanium alloy. The results showed that ultra-fine α phase was obtained in Ti-6Al-10.9Cr alloy designed through the pseudo-spinodal mechanism, and it has a high yield strength of 1437 ± 7 MPa. Furthermore, application of the 3D strength model of Ti-6Al-xCr alloy showed that the strength of the alloy depended on the volume fraction and thickness of the α phase. The large number of α/β interfaces produced by ultra-fine α phase greatly improved the strength of the alloy but limited its ductility. Thus, we have demonstrated that the pseudo-spinodal mechanism combined with high-throughput diffusion couple technology and CALPHAD was an efficient method to design low-cost and high-strength titanium alloys.



2021 ◽  
pp. 128977
Author(s):  
Xiaofei Liu ◽  
Xiaofang Liao ◽  
Boyu Jia ◽  
Chaonan Sun ◽  
Lidong Zhou ◽  
...  


Author(s):  
Romesh Kumar Salgotra ◽  
Rafiq Ahmad Bhat ◽  
Deyue Yu ◽  
Javaid Akhter Bhat

Abstract: Over the past two decades, the advances in the next generation sequencing (NGS) platforms have led to the identification of numerous genes/QTLs at high-resolution for their potential use in crop improvement. The genomic resources generated through these high-throughput sequencing techniques have been efficiently used in screening of particular gene of interest particularly for numerous types of plant stresses and quality traits. Subsequently, the identified-markers linked to a particular trait have been used in marker-assisted backcross breeding (MABB) activities. Besides, these markers are also being used to catalogue the food crops for detection of adulteration to improve the quality of food. With the advancement of technologies, the genomic resources are originating with new markers; however, to use these markers efficiently in crop breeding, high-throughput techniques (HTT) such as multiplex PCR and capillary electrophoresis (CE) can be exploited. Robustness, ease of operation, good reproducibility and low cost are the main advantages of multiplex PCR and CE. The CE is capable of separating and characterizing proteins with simplicity, speed and small sample requirements. Keeping in view the availability of vast data generated through NGS techniques and development of numerous markers, there is a need to use these resources efficiently in crop improvement programmes. In summary, this review describes the use of molecular markers in the screening of resistance genes in breeding programmes and detection of adulterations in food crops using high-throughput techniques.



2018 ◽  
Vol 17 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Abdolrazagh Hashemi Shahraki ◽  
Subba Rao Chaganti ◽  
Daniel Heath

Abstract The characterization of microbial community dynamics using genomic methods is rapidly expanding, impacting many fields including medical, ecological, and environmental research and applications. One of the biggest challenges for such studies is the isolation of environmental DNA (eDNA) from a variety of samples, diverse microbes, and widely variable community compositions. The current study developed environmentally friendly, user safe, economical, and high throughput eDNA extraction methods for mixed aquatic microbial communities and tested them using 16 s rRNA gene meta-barcoding. Five different lysis buffers including (1) cetyltrimethylammonium bromide (CTAB), (2) digestion buffer (DB), (3) guanidinium isothiocyanate (GITC), (4) sucrose lysis (SL), and (5) SL-CTAB, coupled with four different purification methods: (1) phenol-chloroform-isoamyl alcohol (PCI), (2) magnetic Bead-Robotic, (3) magnetic Bead-Manual, and (4) membrane-filtration were tested for their efficacy in extracting eDNA from recreational freshwater samples. Results indicated that the CTAB-PCI and SL-Bead-Robotic methods yielded the highest genomic eDNA concentrations and succeeded in detecting the core microbial community including the rare microbes. However, our study recommends the SL-Bead-Robotic eDNA extraction protocol because this method is safe, environmentally friendly, rapid, high-throughput and inexpensive.





2010 ◽  
Vol 4 (8-9) ◽  
pp. 697-705 ◽  
Author(s):  
Henning G. Hansen ◽  
Julie Overgaard ◽  
Maria Lajer ◽  
Frantisek Hubalek ◽  
Peter Højrup ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document