scholarly journals CONET: Copy number event tree model of evolutionary tumor history for single-cell data

2021 ◽  
Author(s):  
Magda Markowska ◽  
Tomasz Cąkała ◽  
Błażej Miasojedow ◽  
Dilafruz Juraeva ◽  
Johanna Mazur ◽  
...  

AbstractCopy number alterations constitute important phenomena in tumor evolution. Whole genome single cell sequencing gives insight into copy number profiles of individual cells, but is highly noisy. Here, we propose CONET, a probabilistic model for joint inference of the evolutionary tree on copy number events and copy number calling. CONET employs an efficient MCMC procedure to search the space of possible model structures and parameters and utilizes both per-bin and per-breakpoint data. We introduce a range of model priors and penalties for efficient regularization. CONET achieves excellent performance on simulated data and for 260 cells from xenograft breast cancer sample.

2019 ◽  
Author(s):  
Haoyun Lei ◽  
Bochuan Lyu ◽  
E. Michael Gertz ◽  
Alejandro A. Schäffer ◽  
Xulian Shi ◽  
...  

AbstractCharacterizing intratumor heterogeneity (ITH) is crucial to understanding cancer development, but it is hampered by limits of available data sources. Bulk DNA sequencing is the most common technology to assess ITH, but mixes many genetically distinct cells in each sample, which must then be computationally deconvolved. Single-cell sequencing (SCS) is a promising alternative, but its limitations — e.g., high noise, difficulty scaling to large populations, technical artifacts, and large data sets — have so far made it impractical for studying cohorts of sufficient size to identify statistically robust features of tumor evolution. We have developed strategies for deconvolution and tumor phylogenetics combining limited amounts of bulk and single-cell data to gain some advantages of single-cell resolution with much lower cost, with specific focus on deconvolving genomic copy number data. We developed a mixed membership model for clonal deconvolution via non-negative matrix factorization (NMF) balancing deconvolution quality with similarity to single-cell samples via an associated efficient coordinate descent algorithm. We then improve on that algorithm by integrating deconvolution with clonal phylogeny inference, using a mixed integer linear programming (MILP) model to incorporate a minimum evolution phylogenetic tree cost in the problem objective. We demonstrate the effectiveness of these methods on semi-simulated data of known ground truth, showing improved deconvolution accuracy relative to bulk data alone.


2020 ◽  
Author(s):  
Haoyun Lei ◽  
E. Michael Gertz ◽  
Alejandro A. Schäffer ◽  
Xuecong Fu ◽  
Yifeng Tao ◽  
...  

AbstractComputational reconstruction of clonal evolution in cancers has become a crucial tool for understanding how tumors initiate and progress and how this process varies across patients. The field still struggles, however, with special challenges of applying phylogenetic methods to cancers, such as the prevalence and importance of copy number alteration (CNA) and structural variation (SV) events in tumor evolution, which are difficult to profile accurately by prevailing sequencing methods in such a way that subsequent reconstruction by phylogenetic inference algorithms is accurate. In the present work, we develop computational methods to combine sequencing with multiplex interphase fluorescence in situ hybridization (miFISH) to exploit the complementary advantages of each technology in inferring accurate models of clonal CNA evolution accounting for both focal changes and aneuploidy at whole-genome scales. We demonstrate on simulated data that incorporation of FISH data substantially improves accurate inference of focal CNA and ploidy changes in clonal evolution from deconvolving bulk sequence data. Analysis of real glioblastoma data for which FISH, bulk sequence, and single cell sequence are all available confirms the power of FISH to enhance accurate reconstruction of clonal copy number evolution in conjunction with bulk and optionally single-cell sequence data.Availabilitygithub.com/CMUSchwartzLab/[email protected]


2019 ◽  
Author(s):  
Gryte Satas ◽  
Simone Zaccaria ◽  
Geoffrey Mon ◽  
Benjamin J. Raphael

AbstractMotivationSingle-cell DNA sequencing enables the measurement of somatic mutations in individual tumor cells, and provides data to reconstruct the evolutionary history of the tumor. Nearly all existing methods to construct phylogenetic trees from single-cell sequencing data use single-nucleotide variants (SNVs) as markers. However, most solid tumors contain copy-number aberrations (CNAs) which can overlap loci containing SNVs. Particularly problematic are CNAs that delete an SNV, thus returning the SNV locus to the unmutated state. Such mutation losses are allowed in some models of SNV evolution, but these models are generally too permissive, allowing mutation losses without evidence of a CNA overlapping the locus.ResultsWe introduce a novel loss-supported evolutionary model, a generalization of the infinite sites and Dollo models, that constrains mutation losses to loci with evidence of a decrease in copy number. We design a new algorithm, Single-Cell Algorithm for Reconstructing the Loss-supported Evolution of Tumors (Scarlet), that infers phylogenies from single-cell tumor sequencing data using the loss-supported model and a probabilistic model of sequencing errors and allele dropout. On simulated data, we show that Scarlet outperforms current single-cell phylogeny methods, recovering more accurate trees and correcting errors in SNV data. On single-cell sequencing data from a metastatic colorectal cancer patient, Scarlet constructs a phylogeny that is both more consistent with the observed copy-number data and also reveals a simpler monooclonal seeding of the metastasis, contrasting with published reports of polyclonal seeding in this patient. Scarlet substantially improves single-cell phylogeny inference in tumors with CNAs, yielding new insights into the analysis of tumor evolution.AvailabilitySoftware is available at github.com/raphael-group/[email protected]


Author(s):  
Jack Kuipers ◽  
Mustafa Anıl Tuncel ◽  
Pedro Ferreira ◽  
Katharina Jahn ◽  
Niko Beerenwinkel

Copy number alterations are driving forces of tumour development and the emergence of intra-tumour heterogeneity. A comprehensive picture of these genomic aberrations is therefore essential for the development of personalised and precise cancer diagnostics and therapies. Single-cell sequencing offers the highest resolution for copy number profiling down to the level of individual cells. Recent high-throughput protocols allow for the processing of hundreds of cells through shallow whole-genome DNA sequencing. The resulting low read-depth data poses substantial statistical and computational challenges to the identification of copy number alterations. We developed SCICoNE, a statistical model and MCMC algorithm tailored to single-cell copy number profiling from shallow whole-genome DNA sequencing data. SCICoNE reconstructs the history of copy number events in the tumour and uses these evolutionary relationships to identify the copy number profiles of the individual cells. We show the accuracy of this approach in evaluations on simulated data and demonstrate its practicability in applications to a xenograft breast cancer sample.


2021 ◽  
Author(s):  
Nicholas Navin ◽  
Jake Leighton ◽  
Min Hu ◽  
Emi Sei ◽  
Funda Meric-Bernstam

Single cell DNA sequencing (scDNA-seq) methods are powerful tools for profiling mutations in cancer cells, however most genomic regions characterized in single cells are non-informative. To overcome this issue, we developed a Multi-Patient-Targeted (MPT) scDNA-seq sequencing method. MPT involves first performing bulk exome sequencing across a cohort of cancer patients to identify somatic mutations, which are then pooled together to develop a single custom targeted panel for high-throughput scDNA-seq using a microfluidics platform. We applied MPT to profile 330 mutations across 23,500 cells from 5 TNBC patients, which showed that 3 tumors were monoclonal and 2 tumors were polyclonal. From this data, we reconstructed mutational lineages and identified early mutational and copy number events, including early TP53 mutations that occurred in all five patients. Collectively, our data suggests that MPT can overcome technical obstacles for studying tumor evolution using scDNA-seq by profiling information-rich mutation sites.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009466
Author(s):  
Stephen Zhang ◽  
Anton Afanassiev ◽  
Laura Greenstreet ◽  
Tetsuya Matsumoto ◽  
Geoffrey Schiebinger

Understanding how cells change their identity and behaviour in living systems is an important question in many fields of biology. The problem of inferring cell trajectories from single-cell measurements has been a major topic in the single-cell analysis community, with different methods developed for equilibrium and non-equilibrium systems (e.g. haematopoeisis vs. embryonic development). We show that optimal transport analysis, a technique originally designed for analysing time-courses, may also be applied to infer cellular trajectories from a single snapshot of a population in equilibrium. Therefore, optimal transport provides a unified approach to inferring trajectories that is applicable to both stationary and non-stationary systems. Our method, StationaryOT, is mathematically motivated in a natural way from the hypothesis of a Waddington’s epigenetic landscape. We implement StationaryOT as a software package and demonstrate its efficacy in applications to simulated data as well as single-cell data from Arabidopsis thaliana root development.


2021 ◽  
Author(s):  
Pedro F Ferreira ◽  
Jack Kuipers ◽  
Niko Beerenwinkel

Cancer arises and evolves by the accumulation of somatic mutations that provide a selective advantage. The interplay of mutations and their functional consequences shape the evolutionary dynamics of tumors and contribute to different clinical outcomes. In the absence of scalable methods to jointly assay genomic and transcriptomic profiles of the same individual cell, the two data modalities are usually measured separately and need to be integrated computationally. Here, we introduce SCATrEx, a statistical model to map single-cell gene expression data onto the evolutionary history of copy number alterations of the tumor. SCATrEx jointly assigns cancer cells assayed with scRNA-seq to copy number profiles arranged in a copy number aberration tree and augments the tree with clone-specific clusters. Our simulations show that SCATrEx improves over both state-of-the-art unsupervised clustering methods and cell-to-clone assignment methods. In an application to real data, we observe that SCATrEx finds inter-clone and intra-clone gene expression heterogeneity not detectable using other integration methods. SCATrEx will allow for a better understanding of tumor evolution by jointly analysing the genomic and transcriptomic changes that drive it.


2016 ◽  
Author(s):  
Sarah A. Vitak ◽  
Kristof A. Torkenczy ◽  
Jimi L. Rosenkrantz ◽  
Andrew J. Fields ◽  
Lena Christiansen ◽  
...  

AbstractSingle cell genome sequencing has proven to be a valuable tool for the detection of somatic variation, particularly in the context of tumor evolution and neuronal heterogeneity. Current technologies suffer from high per-cell library construction costs which restrict the number of cells that can be assessed, thus imposing limitations on the ability to quantitatively measure genomic heterogeneity within a tissue. Here, we present Single cell Combinatorial Indexed Sequencing (SCI-seq) as a means of simultaneously generating thousands of low-pass single cell libraries for the purpose of somatic copy number variant detection. In total, we constructed libraries for 16,698 single cells from a combination of cultured cell lines, frontal cortex tissue from Macaca mulatta, and two human adenocarcinomas. This novel technology provides the opportunity for low-cost, deep characterization of somatic copy number variation in single cells, providing a foundational knowledge across both healthy and diseased tissues.


2021 ◽  
Author(s):  
Sanjana Rajan ◽  
Simone Zaccaria ◽  
Matthew V. Cannon ◽  
Maren Cam ◽  
Amy C. Gross ◽  
...  

AbstractOsteosarcoma is an aggressive malignancy characterized by high genomic complexity. Identification of few recurrent mutations in protein coding genes suggests that somatic copy-number aberrations (SCNAs) are the genetic drivers of disease. Models around genomic instability conflict-it is unclear if osteosarcomas result from pervasive ongoing clonal evolution with continuous optimization of the fitness landscape or an early catastrophic event followed by stable maintenance of an abnormal genome. We address this question by investigating SCNAs in 12,019 tumor cells obtained from expanded patient tissues using single-cell DNA sequencing, in ways that were previously impossible with bulk sequencing. Using the CHISEL algorithm, we inferred allele- and haplotype-specific SCNAs from whole-genome single-cell DNA sequencing data. Surprisingly, we found that, despite extensive genomic aberrations, cells within each tumor exhibit remarkably homogeneous SCNA profiles with little sub-clonal diversification. Longitudinal analysis between two pairs of patient samples obtained at distant time points (early detection, relapse) demonstrated remarkable conservation of SCNA profiles over tumor evolution. Phylogenetic analysis suggests that the bulk of SCNAs was acquired early in the oncogenic process, with few new events arising in response to therapy or during adaptation to growth in distant tissues. These data suggest that early catastrophic events, rather than sustained genomic instability, drive formation of these extensively aberrant genomes. Overall, we demonstrate the power of combining single-cell DNA sequencing with an allele- and haplotype-specific SCNA inference algorithm to resolve longstanding questions regarding genetics of tumor initiation and progression, questioning the underlying assumptions of genomic instability inferred from bulk tumor data.


Sign in / Sign up

Export Citation Format

Share Document