scholarly journals Genome-wide mutational signatures of immunological diversification in normal lymphocytes

2021 ◽  
Author(s):  
Heather Machado ◽  
Emily Mitchell ◽  
Nina Obro ◽  
Kirsten Kubler ◽  
Megan Davies ◽  
...  

A lymphocyte suffers many threats to its genome, including programmed mutation during differentiation, antigen-driven proliferation and residency in diverse microenvironments. After developing protocols for single-cell lymphocyte expansions, we sequenced whole genomes from 717 normal naive and memory B and T lymphocytes and hematopoietic stem cells. Lymphocytes carried more point mutations and structural variation than stem cells, accruing at higher rates in T than B cells, attributable to both exogenous and endogenous mutational processes. Ultraviolet light exposure and other sporadic mutational processes generated hundreds to thousands of mutations in some memory lymphocytes. Memory B cells acquired, on average, 18 off-target mutations genome-wide for every one on-target IGV mutation during the germinal center reaction. Structural variation was 16-fold higher in lymphocytes than stem cells, with ~15% of deletions being attributable to off-target RAG activity.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4107-4107
Author(s):  
Max Jan ◽  
Florian Scherer ◽  
David M. Kurtz ◽  
Aaron M Newman ◽  
Henning Stehr ◽  
...  

Abstract Background: Pre-leukemic hematopoietic stem cells (HSC) have been implicated in AML (Jan et al STM 2012) and also for several lymphoid leukemias including ALL, HCL, and CLL. Separately, relapse of ALL following CD19 CAR-T cell therapy has been associated with lymphomyeloid lineage switch. Finally, healthy persons with clonally expanded HSCs are at increased risk of hematologic malignancies including lymphomas, and in mouse DLBCL models we previously demonstrated the oncogenic sufficiency of BCL6 overexpression in HSC (Green et al 2014 Nat Comm). Nevertheless, the cellular origin of DLBCL in the majority of patients is not definitively known. We sought to investigate the presence of mutations found in DLBCL within matched HSCs. Methods: We deeply genotyped somatic mutations in diagnostic biopsy tissues of 16 patients with DLBCL using CAPP-Seq to a median sequencing depth of 1100x (Newman et al 2014 Nat Med; Scherer et al 2015 ASH). We then profiled each patient for evidence implicating HSCs using somatic mutation lineage tracing, in either direct or indirect fashion. For direct evaluation, we used highly purified, serially FACS-sorted HSCs from grossly uninvolved bone marrow (BM) (n=5; Fig 1a-b). For indirect assessment, we either profiled serial tumor biopsies (n=13), or interrogated sorted cells from terminally differentiated blood lineages (n=7), including peripheral CD3+ T cells, CD14+ Monocytes, and B cells expressing a light-chain discordant to that of tumor isotype. HSCs and differentiated lineages were then interrogated by direct genotyping, using 3 highly sensitive orthogonal quantitative methods, including Myd88 L265P droplet digital PCR (n=6), BCL6 translocation breakpoint qPCR (n=4), and DLBCL CAPP-Seq profiling of 268 genes (n=5). We used the theoretical limit of detection (LOD) genotyping performance for CAPP-Seq (0.001%, Newman et al 2016 Nat Biotech), and established analytical sensitivity of our custom MYD88 ddPCR via limiting dilution (~1%). These LODs met or exceeded the expected limit of sorting impurity by FACS (~1%). For 6 patients experiencing one or more DLBCL relapse, we deeply profiled 13 serial tumor biopsies by CAPP-Seq, and then assessed overlap in somatic mutations and VDJ sequences in biopsy pairs as additional indirect evidence implicating HSCs. Results: We obtained a median of ~2000 sorted HSCs and ~1700 sorted cells from differentiated lineages, and genotyped each population using one or more of the 3 direct genotyping methods described above. Three patients with sufficient cell numbers were profiled both by CAPP-Seq and either ddPCR (n=2) or qPCR (n=1). Surprisingly, we found no evidence implicating HSCs either directly or indirectly in any of the 16 patients, regardless of the assay employed or the cell types/lineages genotyped (e.g., Fig 1b). In 2 patients with MYD88 L265P mutations, we found evidence for MYD88+ B-cells with discordant light chains by ddPCR (~0.1%) potentially implicating common lymphoid precursors (CLPs), but found no evidence for similar involvement of T-cells or monocytes. In 6 DLBCL patients experiencing relapse, tumor pairs profiled by CAPP-Seq (median depth 957) shared 93% of somatic mutations (75-100%, Fig 1c). Such pairs invariably shared clonal IgH VDJ rearrangements (4/4, 100%), thus implicating a common progenitor arising in later stages of B-cell development, not HSCs. Conclusions: We find no evidence to implicate HSCs in the derivation of DLBCL. While formal demonstration of absence of pre-malignant HSCs in DLBCL would require overcoming practical and technical limitations (including number of available HSCs, sorting purity, and genotyping sensitivity), the pattern of shared somatic alterations at relapse makes this highly unlikely. We speculate that unlike lymphoid leukemias, the cell-of-origin for most DLBCLs reside later in B-lymphopoiesis, beyond CLPs. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Figure. (a) HSC sorting from BM by FACS (b) Allele frequencies of mutations found by CAPP-Seq in an examplary DLBCL case (x-axis) compared to the same variants in HSCs (y-axis). (c) Phylogenetic trees of DLBCL patients experiencing relapse (n=6) with tumor pairs sequenced by CAPP-Seq. Shown are the evolutionary distances between (i) germline and common inferrable progenitor (CIP) illustrating the fraction of shared mutations between tumor pairs, and (ii) CIP and both diagnostic (tumor 1) and relapse tumors (tumor 2) indicating unique mutations to each tumor. Disclosures Newman: Roche: Consultancy. Levy:Kite Pharma: Consultancy; Five Prime Therapeutics: Consultancy; Innate Pharma: Consultancy; Beigene: Consultancy; Corvus: Consultancy; Dynavax: Research Funding; Pharmacyclics: Research Funding. Diehn:Novartis: Consultancy; Quanticel Pharmaceuticals: Consultancy; Roche: Consultancy; Varian Medical Systems: Research Funding.


2021 ◽  
Author(s):  
Bettina Nadorp ◽  
Giacomo Grillo ◽  
Aditi Qamra ◽  
Amanda Mitchell ◽  
Christopher Arlidge ◽  
...  

AbstractDespite most acute myeloid leukemia (AML) patients achieving complete remission after induction chemotherapy, two thirds of patients will relapse with fatal disease within 5 years. AML is organized as a cellular hierarchy sustained by leukemia stem cells (LSC) at the apex, with LSC properties directly linked to tumor progression, therapy failure and disease relapse 1–5. Despite the central role of LSC in poor patient outcomes, little is known of the genetic determinants of their stemness properties 6–8. Although much AML research focuses on mutational processes and their impact on gene expression programs, the genetic determinants of cell state properties including stemness expand beyond mutations, relying on the genetic architecture captured in the chromatin of each cell 9–11. As LSCs share many functional and molecular properties with normal hematopoietic stem cells (HSC), we identified genetic determinants of primitive populations enriched for LSCs and HSCs in comparison with their downstream mature progeny by investigating their chromatin accessibility. Our work reveals how distinct transposable element (TE) subfamilies are used in primitive versus mature populations, functioning as docking sites for stem cell-associated regulators of genome topology, including CTCF, or lineage-specific transcription regulators in primitive and mature populations, respectively. We further show how TE subfamilies accessible in LSCs define docking sites for several oncogenic drivers in AML, namely FLI1, LYL1 and MEIS1. Using chromatin accessibility profiles from a cohort of AML patients, we further show the clinical utility of our TE accessibility-based LSCTE121 scoring scheme to identify patients with high rates of relapse. Collectively, our work reveals how different accessible TE subfamilies serve as genetic determinants of stemness properties in normal and leukemic hematopoietic stem cells.


2012 ◽  
Vol 21 (1) ◽  
pp. 133-142 ◽  
Author(s):  
Marilaine Fournier ◽  
Charles-Étienne Lebert-Ghali ◽  
Gorazd Krosl ◽  
Janet J. Bijl

2006 ◽  
Vol 103 (9) ◽  
pp. 3304-3309 ◽  
Author(s):  
C. J. Luckey ◽  
D. Bhattacharya ◽  
A. W. Goldrath ◽  
I. L. Weissman ◽  
C. Benoist ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1455-1455
Author(s):  
Cesar Nombela-Arrieta ◽  
Brendan Harley ◽  
Gregory Pivarnik ◽  
John E Mahoney ◽  
Elena Levantini ◽  
...  

Abstract Abstract 1455 Poster Board I-478 Sustained production of all mature blood cell types relies on the continuous proliferation and differentiation of a rare population of self-renewing, multipotent hematopoietic stem cells (HSCs). HSC maintenance and lineage differentiation are thought to be regulated by spatially confined niches, defined by cellular components, soluble regulators, and the extracellular matrix immediately surrounding stem cells. Identification of these microenvironments in which endogenous and transferred HSCs reside within the BM is a major challenge in stem cell biology with relevant clinical implications. Yet the extreme rarity of HSCs, their dynamic nature, and the lack of specific markers to identify them, have precluded an accurate definition of HSC niches to date. Quantitative imaging technologies such as Laser Scanning Cytometry (LSC) are designed for the automated analysis of large cell numbers at a single cell level with high resolution while preserving the morphological information lost in flow cytometry, therefore providing data of statistical significance even for rare cell populations such as HSCs. We have employed LSC to analyze the localization of both adoptively transferred and endogenous hematopoietic stem and progenitor cell (HSPC) populations inside whole longitudinal sections of murine femoral BM cavities. Our results indicate that, as previously suggested, purified HSPC (Lin−c-kit+Sca-1+) significantly accumulate in endosteal regions (ER) of BM cavities (within 100μm of inner bone surface) upon transplantation. Nevertheless, analysis of sufficient numbers of more differentiated cell subsets (Lin−c-kit+Sca-1− progenitors, pro B cells and mature B cells) indicated that these areas serve as homing sites for most hematopoietic cells, highlighting the limitations of any conclusions drawn on HSC niche identity from studies performed with transferred HSPC populations. Immunofluorescent staining of endogenous cell populations revealed a gradient in distribution of early hematopoietic progenitors (c-kit+), which accumulated in but were not restricted to ER regions. Of note, a vast majority (>80%) of HSPC (Bmi-GFPhic-kit+, or Lin−c-kit+Sca-1+),were found inside ER, although not directly adjacent to endosteal surfaces. Our studies define endosteal areas as tissue regions where HSPC reside in close proximity, but not necessarily in direct contact with a dense vascular network, osteoblastic cells and other potential niche cell types and growth factors currently under investigation. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1190-1190 ◽  
Author(s):  
Diana R Dou ◽  
Arazin Minasian ◽  
Maria I Sierra ◽  
Pamela Saarikoski ◽  
Jian Xu ◽  
...  

Abstract Abstract 1190 The inability to derive functional hematopoietic stem cells (HSCs) in vitro from pluripotent cells prevents widespread utilization of HSCs in the clinic; however, the molecular defects compromising the in vitro generated hematopoietic stem/progenitor cells (HSPCs) are unknown. Using a two-step differentiation method in which human embryonic stem cells (hESCs) were first differentiated into embryo bodies (EBs) and then CD34+ cells from hEBs were co-cultured on OP9M2 bone marrow mesenchymal stem cell (MSC) stroma (hEB-OP9), we were able to derive HSPCs expressing the HSC immunophenotype (CD34+CD38−CD90+CD45+) (hereafter termed CD90+HSPCs). Colony forming and stroma co-culture assays demonstrated that the hEB-OP9 CD90+HSPCs were able to differentiate into myelo-erythroid lineages and T-cells. However, when comparing CD90+HSPCs from hEB-OP9 to those from fetal liver (FL)—an in vivo source of HSCs—the former remained severely functionally limited in their proliferative potential and ability to differentiate into B-cells. To identify the basis of the proliferative and differentiation defects, we performed microarray analysis to define gene expression differences between CD90+HSPCs derived from hEB-OP9, FL, early 3–5 week placenta (PL) and an earlier stage of hESC differentiation (hEB). This analysis revealed establishment of the general hematopoietic transcription factor network (e.g. SCL, RUNX1, CMYB, ETV6, HOXB4, MYB), demonstrating the successful differentiation and identification of hematopoietic cells using our two-step culturing techniques and immunophenotype criteria. Moreover, evaluation of Spearman coefficients confirmed CD90+HSPCs isolated from hEB-OP9 culture were brought into closer resemblance of the hFL CD90+HSPCs as compared to to the developmentally immature hEB and hPL CD90+HSPCs. Encouragingly, hEB-OP9 CD90+HSPCs displayed downregulation of expression of genes related to hemogenic endothelium development associated with hEB and hPL while genes critical in HSPC function, including DNA repair and chromatin modification, were upregulated to levels comparable to hFL-HSPCs. However, a subgroup of FL HSPC genes could not be induced in hEB-OP9 HSPCs, including the HOXA cluster genes and BCL11A—implicated in HSC self-renewal and B-cell formation, respectively. Interestingly, absence of HOXA genes and BCL11A and poor proliferative potential were also observed in HSPCs from early placenta, suggesting these defects are not in vitro artifacts but instead reflect an inability of hEB-OP9 HSPCs to complete developmental maturation. To validate the necessity of HOXA genes and BCL11A in proliferation potential and multipotency, we next utilized shRNAs to target MLL—the upstream regulator of the HOXA cluster—, individual HOXA genes, or BCL11A in FL-HSPCs to test whether knockdown was sufficient to recapitulate the defects observed in hESC-derived HSPCs. Knockdown of HOXA7 resulted in the loss of CD34+ cells while HOXA9 shRNA-treated cells displayed a loss of more differentiated CD38hi cells. MLL knockdown depleted both CD38+ and CD34+ populations. BCL11A silencing resulted in the loss of B-cells. These studies identify HOXA genes and BCL11A as developmentally regulated genes essential for generating self-renewing, multipotent HSCs from pluripotent cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 310-310
Author(s):  
Zhenhua Yang ◽  
Kushani Shah ◽  
Jonathan Augustin ◽  
Jing Hu ◽  
Hao Jiang

Abstract Epigenetic modulators have emerged as promising targets for treating cancers, especially blood cancers. As the major histone H3K4 methylation enzymes in mammals, the SET1/MLL complexes represent potential drug targets in epigenetic therapeutics due to (i) the intimate connection of H3K4 methylation with gene expression, and (ii) their extensive association with multiple cancers including blood cancers. However, the functional role for the SET1/MLL complexes in tumorigenesis remains largely unclear. The SET1/MLL complexes comprise one of six different catalytic subunits and several shared core subunits including DPY30. We have previously shown that DPY30 directly facilitates genome-wide H3K4 methylation, and plays a crucial role in fundamental cellular processes including proliferation and differentiation, especially in the hematopoietic system. Our new analyses have shown that the core, but not the catalytic, subunits of SET1/MLL complexes is significantly up-regulated in primary human Burkitt's lymphomas bearing MYC-Ig translocations compared to other B lymphomas, and Myc binds to genes encoding the core but not the catalytic subunits. These results indicate that the core subunits are directly regulated by MYC, and prompted us to study their functional role in MYC-driven tumorigenesis. Using a Dpy30 conditional knockout mouse model that we recently established, we have shown a critical role of Dpy30 in the fate determination of hematopoietic stem and progenitor cells. Due to the severe pancytopenia of the knockout mice, we tested if genetically reducing Dpy30 dose may affect Myc-driven tumorigenesis in the Eμ-myc mouse. We found that Eμ-myc; Dpy30+/- mice survived significantly longer than their Eμ-myc littermates (see figure), with the median survival extended from 121 to 180 days, and with significantly alleviated spleen enlargement. Importantly, Dpy30+/- mice (no Eμ-myc) appear completely healthy with normal blood profiles. These results demonstrate that reducing Dpy30 level confers a significant resistance to Myc-driven lymphomagenesis without affecting normal physiology. We then found that, in the presence of Eμ -Myc, Dpy30 heterozygosity significantly increased apoptosis of splenic B cells, and reduced expression of some key anti-apoptotic genes. We further showed that Dpy30 directly bound to and controlled the H3K4 methylation at the regulated anti-apoptosis genes in splenic B cells. These results suggest that Myc overexpression increases the dependence of key apoptosis-regulatory genes on Dpy30, and thus sensitizes tumor cells to Dpy30 inhibition, exhibiting "epigenetic vulnerability". To further study DPY30's role in MYC-dependent tumorigenesis at the molecular level, we have shown that DPY30 depletion in a MYC-dependent B lymphoma cell line markedly reduced (i) the lymphoma cell growth, (ii) expression of MYC targets, and most interestingly, (iii) binding of MYC to many of its genomic targets, as revealed by our ChIP-seq results. These results suggest that, in addition to promoting the expression of MYC gene itself that we previously found, DPY30 also reguates MYC's activity through promoting the genomic binding of MYC protein for target transcription. Taken together, our studies have established an important role of Dpy30 in the Myc-driven lymphomagenesis, partially through its regulation of the target binding activity of Myc. Further studies of the genome-wide impact of Dpy30 inhibition on the chromatin configuration and expression of key tumoregenic genes are undergoing and will be discussed. These studies will help us understand how Dpy30-mediated chromatin modification coordinates with key oncogenes in promoting hematological malignancies, and thus may represent a potential epigenetic target in treatment of certain blood cancers. Figure 1. Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 103 (11) ◽  
pp. 4344-4352 ◽  
Author(s):  
Benny J. Chen ◽  
Xiuyu Cui ◽  
Gregory D. Sempowski ◽  
Jos Domen ◽  
Nelson J. Chao

Abstract In the current study, we tested whether higher numbers of hematopoietic stem cells correlate with the speed of immune reconstitution in a congenic transplantation model (C57BL/Ka, CD45.1, Thy1.1→C57BL/6, CD45.2, Thy1.2) using purified hematopoietic stem cells (c-Kit+Thy1.1lowLin-/lowSca-1+). There were 3 different doses of stem cells used (400, 1000, and 5000). Phenotypic analyses in peripheral blood and spleen demonstrated that higher numbers of infused stem cells are associated with more rapid regeneration of T cells (CD4+, CD8+, naive CD4+, naive CD8+) and B cells at early time points. The numbers of T and B cells eventually became equivalent between different dose groups at late time points. Production of interleukin-2 and inter-feron-γ per T cell was similar regardless of stem cell dose even when tested at the time when there were significant differences in peripheral T-cell counts. The improved immune recovery was attributed to a more rapid regeneration of donor-type immune cells. Higher numbers of total thymocytes and signal joint T-cell receptor excision circles were observed in the higher dose stem cell recipients, suggesting that accelerated regeneration of T cells was due to enhanced thymopoiesis. (Blood. 2004;103:4344-4352)


Immunity ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 493-507 ◽  
Author(s):  
Samuel Yao-Ming Ng ◽  
Toshimi Yoshida ◽  
Jiangwen Zhang ◽  
Katia Georgopoulos

Blood ◽  
1996 ◽  
Vol 87 (1) ◽  
pp. 93-101 ◽  
Author(s):  
M Hashiyama ◽  
A Iwama ◽  
K Ohshiro ◽  
K Kurozumi ◽  
K Yasunaga ◽  
...  

Abstract A receptor tyrosine kinase (RTK), TIE (tyrosine kinase that contains immunoglobulin-like loops and epidermal growth factor [EGF] homology domains), is expressed in vascular endothelial and hematopoietic cells. We generated monoclonal antibodies (MoAbs) against the extracellular domain of TIE and a polyclonal antibody against the TIE carboxyterminus and used them to analyze expression of TIE in hematopoietic cells. Western blotting detected two forms of TIE protein with a molecular mass of 135 and 130 kD in hematopoietic and endothelial cells. Northern blotting analysis revealed that TIE was expressed preferentially in undifferentiated cell lines, especially when megakaryocytic, but not erythroid differentiation was induced. Reverse transcriptase-polymerase chain reaction (RT-PCR) showed that TIE was predominantly expressed in the human hematopoietic progenitor fraction, CD34+ cells. Fluorescence- activated cell sorting (FACS) showed that 42% of CD34+ and 17% of KIT- positive (KIT+) cells were TIE-positive (TIE+). The majority (81%) of the primitive hematopoietic stem cells, CD34+CD38- cells, were TIE+. Assays of progenitor cells and long-term culture-initiating cells (LTC- IC) showed that the TIE+ fraction contained more primitive cells than the TIE- fraction. Some TIE+ cells were in the CD34- fraction, which were CD19+ and CD20+ (B cells). These findings indicate that TIE has a unique spectrum of expression in primitive hematopoietic stem cells and B cells. Although its ligand has not been identified, TIE and its ligand may establish a novel regulatory pathway not only in early hematopoiesis, but also in the differentiation and/or proliferation of B cells.


Sign in / Sign up

Export Citation Format

Share Document