scholarly journals Seasonal variation in the relative importance of assembly processes in marine fish communities as determined by environmental DNA analyses

2021 ◽  
Author(s):  
Naoto Shinohara ◽  
Yuki Hongo ◽  
Momoko Ichinokawa ◽  
Shota Nishijima ◽  
Shuhei Sawayama ◽  
...  

Compositional variation among local communities is a result of environmental (e.g., environmental filtering) and spatial (e.g., dispersal limitation) processes. Growing evidence suggests that their relative importance varies temporally, but little is known about the short-time scale dynamics, that is, seasonality. Using marine fish communities in a Japanese bay as a model system, we tested the hypothesis that seasonal changes in the environment induce a shift in the relative importance of environmental and spatial processes. We used one-year monthly monitoring data obtained using environmental DNA and conducted a variation partitioning analysis to decompose the two processes. The relative importance of environmental and spatial processes was comparable averaged over the year but changed seasonally. During summer, when lower dissolved oxygen concentrations may adversely affect organisms, species composition was more explained by space despite larger environmental heterogeneity than in other seasons. This suggests that environmental processes weakened during the season with extremely severe environments, likely due to the random loss of individuals. We conclude that the assembly processes of communities of mobile organisms, such as fishes, can shift even within a year in response to seasonal changes in environmental severity. The results also indicate the applicability of eDNA techniques for community assembly studies.

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3448
Author(s):  
Seid Tiku Mereta ◽  
Pieter Lemmens ◽  
Luc De Meester ◽  
Peter L. M. Goethals ◽  
Pieter Boets

The present study investigates the relative importance of human disturbance, local environmental and spatial factors on variations in bird community composition in natural Ethiopian wetlands with high biodiversity conservation value. We quantified bird abundances, local environmental variables and human disturbances at 63 sites distributed over ten wetlands in two subsequent years. Variation partitioning analyses were used to explore the unique and shared contributions of human disturbance, local environmental variables and spatial factors on variations in community compositions of wetland bird species. Local environmental variables explained the largest amount of compositional variation of wetland bird species. Productivity-related variables were the most important local environmental variables determining bird community composition. Human disturbance was also an important determinant for wetland bird community composition and affected the investigated communities mainly indirectly through its effect on local environmental conditions. Spatial factors only played a minor role in variations in bird community composition. Our study highlights the urgent need for integrated management approaches that consider both nature conservation targets and socio-economic development of the region for the sustainable use and effective conservation of wetland resources.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Masaki Miya

Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations’ Sustainable Development Goal 14 for 2030. Expected final online publication date for the Annual Review of Marine Science, Volume 14 is January 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2016 ◽  
Vol 27 (5) ◽  
pp. 1023-1035 ◽  
Author(s):  
Marie-Hélène Brice ◽  
Stéphanie Pellerin ◽  
Monique Poulin

2021 ◽  
Vol 126 ◽  
pp. 107698
Author(s):  
Petr Blabolil ◽  
Lynsey R. Harper ◽  
Štěpánka Říčanová ◽  
Graham Sellers ◽  
Cristina Di Muri ◽  
...  

2016 ◽  
Vol 13 (10) ◽  
pp. 2901-2911 ◽  
Author(s):  
Torsten Hauffe ◽  
Christian Albrecht ◽  
Thomas Wilke

Abstract. The Balkan Lake Ohrid is the oldest and most diverse freshwater lacustrine system in Europe. However, it remains unclear whether species community composition, as well as the diversification of its endemic taxa, is mainly driven by dispersal limitation, environmental filtering, or species interaction. This calls for a holistic perspective involving both evolutionary processes and ecological dynamics, as provided by the unifying framework of the “metacommunity speciation model”.The current study used the species-rich model taxon Gastropoda to assess how extant communities in Lake Ohrid are structured by performing process-based metacommunity analyses. Specifically, the study aimed (1) to identifying the relative importance of the three community assembly processes and (2) to test whether the importance of these individual processes changes gradually with lake depth or discontinuously with eco-zone shifts.Based on automated eco-zone detection and process-specific simulation steps, we demonstrated that dispersal limitation had the strongest influence on gastropod community composition. However, it was not the exclusive assembly process, but acted together with the other two processes – environmental filtering and species interaction. The relative importance of the community assembly processes varied both with lake depth and eco-zones, though the processes were better predicted by the latter.This suggests that environmental characteristics have a pronounced effect on shaping gastropod communities via assembly processes. Moreover, the study corroborated the high importance of dispersal limitation for both maintaining species richness in Lake Ohrid (through its impact on community composition) and generating endemic biodiversity (via its influence on diversification processes). However, according to the metacommunity speciation model, the inferred importance of environmental filtering and biotic interaction also suggests a small but significant influence of ecological speciation. These findings contribute to the main goal of the Scientific Collaboration on Past Speciation Conditions in Lake Ohrid (SCOPSCO) deep drilling initiative – inferring the drivers of biotic evolution – and might provide an integrative perspective on biological and limnological dynamics in ancient Lake Ohrid.


Author(s):  
Maiko AKATSUKA ◽  
Yuriko TAKAYAMA ◽  
Edwin MUCHEVBE ◽  
Kazunori ITO ◽  
Kenta WATANABE ◽  
...  

2014 ◽  
Vol 161 (11) ◽  
pp. 2597-2607 ◽  
Author(s):  
S. K. Wilson ◽  
C. J. Fulton ◽  
M. Depczynski ◽  
T. H. Holmes ◽  
M. M. Noble ◽  
...  

2017 ◽  
Vol 41 (2) ◽  
pp. 239-253
Author(s):  
Jana Menegassi del Favero ◽  
June Ferraz Dias

In order to analyze the time-space variation of the fish fauna in the surf zone fish communities at Ilha do Cardoso State Park, São Paulo, Brazil, four consecutive hauls were done over a year on three beaches with different degrees of exposure, at low and high tide. To evaluate the influence of each abiotic variable over the fish community, a Canonical Correspondence Analysis was conducted. We identified 7,286 individuals belonging to 20 families and 47 species, most specimens collected were juveniles. At low tide, the highest diversity and richness values were calculated while the highest dominance was obtained at high tide. As for the number of species collected at the three beaches, stood out for the lower values the cooler months, between June and September. Abiotic variables explained 41.3% of the variability of biological data, where 11.4% corresponds to the spatial variation. Meanwhile the temporal variables accounted for 31.9% of the variation in abundance, where 26.3% of the variance explained nycthemeral variation. Additionally two groups were clearly observed between months with low and high temperature. However in this variable, the tidal variation, excluding the seasonal effect, explained 6.2%, while seasonality, excluding tide effect, explained 26.3%. Although the main measurable seasonal changes were related to temperature, water temperature showed a low percentage of explanation in the fish fauna variability (2.7%). Finally, it is emphasized that the seasonal changes in surf zone fish community primarily reflect patterns of recruitment determined by the reproductive activity and coastal circulation.


Sign in / Sign up

Export Citation Format

Share Document