scholarly journals Allosteric Cross-Talk Among SARS-CoV-2 Spike’s Receptor-Binding Domain Mutations Triggers an Effective Hijacking of Human Cell Receptor

2021 ◽  
Author(s):  
Angelo Spinello ◽  
Andrea Saltalamacchia ◽  
Jure Borišek ◽  
Alessandra Magistrato

ABSTRACTThe rapid and relentless emergence of novel highly transmissible SARS-CoV-2 variants, possibly decreasing vaccine efficacy, currently represents a formidable medical and societal challenge. These variants frequently hold mutations on the Spike protein’s Receptor-Binding Domain (RBD), which, binding to the Angiotensin-Converting Enzyme 2 (ACE2) receptor, mediates viral entry into the host cells.Here, all-atom Molecular Dynamics simulations and Dynamical Network Theory of the wild-type and mutant RBD/ACE2 adducts disclose that while the N501Y mutation (UK variant) enhances the Spike’s binding affinity towards ACE2, the N501Y, E484K and K417N mutations (South African variant) aptly adapt to increase SARS-CoV-2 propagation via a two-pronged strategy: (i) effectively grasping ACE2 through an allosteric signaling between pivotal RBD structural elements; and (ii) impairing the binding of antibodies elicited by infected/vaccinated patients. This information, unlocking the molecular terms and evolutionary strategies underlying the increased virulence of emerging SARS-CoV-2 variants, set the basis for developing the next-generation anti-COVID-19 therapeutics.TOC GRAPHICS

2021 ◽  
Vol 7 (7) ◽  
pp. 553
Author(s):  
Bin Gao ◽  
Shunyi Zhu

Coronavirus Disease 2019 (COVID−19) elicited by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS−CoV−2) is calling for novel targeted drugs. Since the viral entry into host cells depends on specific interactions between the receptor−binding domain (RBD) of the viral Spike protein and the membrane−bound monocarboxypeptidase angiotensin converting enzyme 2 (ACE2), the development of high affinity RBD binders to compete with human ACE2 represents a promising strategy for the design of therapeutics to prevent viral entry. Here, we report the discovery of such a binder and its improvement via a combination of computational and experimental approaches. The binder micasin, a known fungal defensin from the dermatophytic fungus Microsporum canis with antibacterial activity, can dock to the crevice formed by the receptor−binding motif (RBM) of RBD via an extensive shape complementarity interface (855.9 Å2 in area) with numerous hydrophobic and hydrogen−bonding interactions. Using microscale thermophoresis (MST) technique, we confirmed that micasin and its C−terminal γ−core derivative with multiple predicted interacting residues exhibited a low micromolar affinity to RBD. Expanding the interface area of micasin through a single point mutation to 970.5 Å2 accompanying an enhanced hydrogen bond network significantly improved its binding affinity by six−fold. Our work highlights the naturally occurring fungal defensins as an emerging resource that may be suitable for the development into antiviral agents for COVID−19.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
James R. Byrnes ◽  
Xin X. Zhou ◽  
Irene Lui ◽  
Susanna K. Elledge ◽  
Jeff E. Glasgow ◽  
...  

ABSTRACT As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to spread around the world, there is an urgent need for new assay formats to characterize the humoral response to infection. Here, we present an efficient, competitive serological assay that can simultaneously determine an individual’s seroreactivity against the SARS-CoV-2 Spike protein and determine the proportion of anti-Spike antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. In this approach based on the use of enzyme-linked immunosorbent assays (ELISA), we present natively folded viral Spike protein receptor-binding domain (RBD)-containing antigens via avidin-biotin interactions. Sera are then competed with soluble ACE2-Fc, or with a higher-affinity variant thereof, to determine the proportion of ACE2 blocking anti-RBD antibodies. Assessment of sera from 144 SARS-CoV-2 patients ultimately revealed that a remarkably consistent and high proportion of antibodies in the anti-RBD pool targeted the epitope responsible for ACE2 engagement (83% ± 11%; 50% to 107% signal inhibition in our largest cohort), further underscoring the importance of tailoring vaccines to promote the development of such antibodies. IMPORTANCE With the emergence and continued spread of the SARS-CoV-2 virus, and of the associated disease, coronavirus disease 2019 (COVID-19), there is an urgent need for improved understanding of how the body mounts an immune response to the virus. Here, we developed a competitive SARS-CoV-2 serological assay that can simultaneously determine whether an individual has developed antibodies against the SARS-CoV-2 Spike protein receptor-binding domain (RBD) and measure the proportion of these antibodies that block interaction with the human angiotensin-converting enzyme 2 (ACE2) required for viral entry. Using this assay and 144 SARS-CoV-2 patient serum samples, we found that a majority of anti-RBD antibodies compete for ACE2 binding. These results not only highlight the need to design vaccines to generate such blocking antibodies but also demonstrate the utility of this assay to rapidly screen patient sera for potentially neutralizing antibodies.


2021 ◽  
Author(s):  
Cecylia S. Lupala ◽  
Vikash Kumar ◽  
Xiao-dong Su ◽  
Chun Wu ◽  
Haiguang Liu

AbstractThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causing agent of the COVID-19 pandemic, has spread globally. Angiotensin-converting enzyme 2 (ACE2) has been identified as the host cell receptor that binds to receptor-binding domain (RBD) of the SARS-COV-2 spike protein and mediates cell entry. Because the ACE2 proteins are widely available in mammals, it is important to investigate the interactions between the RBD and the ACE2 of other mammals. Here we analyzed the sequences of ACE2 proteins from 16 mammals and predicted the structures of ACE2-RBD complexes. Analyses on sequence, structure, and dynamics synergistically provide valuable insights into the interactions between ACE2 and RBD. The comparison results suggest that the ACE2 of bovine, cat and panda form strong binding with RBD, while in the cases of rat, least horseshoe bat, horse, pig, mouse and civet, the ACE2 proteins interact weakly with RBD.


2020 ◽  
Author(s):  
Ankush Garg ◽  
Gaurav Kumar ◽  
Sharmistha Sinha

AbstractnCOVID-19 virus makes cellular entry using its spike protein protruding out on its surface. Angiotensin converting enzyme 2 receptor has been identified as a receptor that mediates the viral entry by binding with the receptor binding motif of spike protein. In the present study, we elucidate the significance of N-terminal domain of spike protein in spike-receptor interactions. Recent clinical reports indicate a link between nCOVID-19 infections with patient comorbidities. The underlying reason behind this relationship is not clear. Using molecular docking, we study the affinity of the nCOVID-19 spike protein with cell receptors overexpressed under disease conditions. Our results suggest that certain cell receptors such as DC/L-SIGN, DPP4, IL22R and ephrin receptors could act as potential receptors for the spike protein. The receptor binding domain of nCOVID-19 is more flexible than that of SARS-COV and has a high propensity to undergo phase separation. Higher flexibility of nCOVID-19 receptor binding domain might enable it to bind multiple receptor partners. Further experimental work on the association of these receptors with spike protein may help us to explain the severity of nCOVID-19 infection in patients with comorbidities.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010175
Author(s):  
Abigael Eva Chaouat ◽  
Hagit Achdout ◽  
Inbal Kol ◽  
Orit Berhani ◽  
Gil Roi ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic. Currently, as dangerous mutations emerge, there is an increased demand for specific treatments for SARS-CoV-2 infected patients. The spike glycoprotein on the virus membrane binds to the angiotensin converting enzyme 2) ACE2 (receptor on host cells through its receptor binding domain (RBD) to mediate virus entry. Thus, blocking this interaction may inhibit viral entry and consequently stop infection. Here, we generated fusion proteins composed of the extracellular portions of ACE2 and RBD fused to the Fc portion of human IgG1 (ACE2-Ig and RBD-Ig, respectively). We demonstrate that ACE2-Ig is enzymatically active and that it can be recognized by the SARS-CoV-2 RBD, independently of its enzymatic activity. We further show that RBD-Ig efficiently inhibits in-vivo SARS-CoV-2 infection better than ACE2-Ig. Mechanistically, we show that anti-spike antibody generation, ACE2 enzymatic activity, and ACE2 surface expression were not affected by RBD-Ig. Finally, we show that RBD-Ig is more efficient than ACE2-Ig at neutralizing high virus titers. We thus propose that RBD-Ig physically blocks virus infection by binding to ACE2 and that RBD-Ig should be used for the treatment of SARS-CoV-2-infected patients.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1244
Author(s):  
Priya Antony ◽  
Ranjit Vijayan

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has had a significant impact on people’s daily lives. The rapidly spreading B.1.617 lineage harbors two key mutations—L452R and E484Q—in the receptor binding domain (RBD) of its spike (S) protein. To understand the impact and structural dynamics of the variations in the interface of S protein and its host factor, the human angiotensin-converting enzyme 2 (hACE2), triplicate 500 ns molecular dynamics simulations were performed using single (E484Q or L452R) and double (E484Q + L452R) mutant structures and compared to wild type simulations. Our results indicate that the E484Q mutation disrupts the conserved salt bridge formed between Lys31 of hACE2 and Glu484 of S protein. Additionally, E484Q, which could favor the up conformation of the RBD, may help in enhanced hACE2 binding and immune escape. L452R introduces a charged patch near the binding surface that permits increased electrostatic attraction between the proteins. An improved network of intramolecular interactions observed is likely to increase the stability of the S protein and conformational changes may prevent the binding of neutralizing antibodies. The results obtained from the molecular dynamics simulations suggest that structural and dynamic changes introduced by these variations enhance the affinity of the viral S protein to hACE2 and could form the basis for further studies.


Author(s):  
Jinkai Zang ◽  
Chenjian Gu ◽  
Bingjie Zhou ◽  
Chao Zhang ◽  
Yong Yang ◽  
...  

AbstractRecently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the pathogen responsible for the ongoing coronavirus disease 2019 (COVID-19) pandemic. Currently, there is no vaccine available for preventing SARS-CoV-2 infection. Like closely related severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 also uses its receptor-binding domain (RBD) on the spike (S) protein to engage the host receptor, human angiotensin-converting enzyme 2 (ACE2), facilitating subsequent viral entry. Here we report the immunogenicity and vaccine potential of SARS-CoV-2 RBD (SARS2-RBD)-based recombinant proteins. Immunization with SARS2-RBD recombinant proteins potently induced a multi-functional antibody response in mice. The resulting antisera could efficiently block the interaction between SARS2-RBD and ACE2, inhibit S-mediated cell-cell fusion, and neutralize both SARS-CoV-2 pseudovirus entry and authentic SARS-CoV-2 infection. In addition, the anti-RBD sera also exhibited cross binding, ACE2-blockade, and neutralization effects towards SARS-CoV. More importantly, we found that the anti-RBD sera did not promote antibody-dependent enhancement of either SARS-CoV-2 pseudovirus entry or authentic virus infection of Fc receptor-bearing cells. These findings provide a solid foundation for developing RBD-based subunit vaccines for SARS-CoV2.


2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Sohail S ◽  
◽  
Rana H ◽  
Awan DS ◽  
Sohail F ◽  
...  

Severe acute respiratory syndrome coronavirus has a great role in causing respiratory illness in humans and has the most important relationship of its spike proteins with host ACE-2 receptors. After entry into the human body, the viral S protein receptor-binding domain binds to human ACE-2 receptor. Two modes explained in this paper of an ACE-2 shedding. The shedding induces the process of viral entry to host cells by binding SARS-CoV-2 proteins. The residues of arginine and lysine in the ACE-2 receptor from 652 to 659 amino acid cleavage by ADAM17 but in TMPRSS2 the residues can be seen on amino acid from 697 to 716. Corona virus genome shows some structural proteins that are responsible for the cellular entry and facilitate the attachment of a virus to the host cell. Virus recognizes the attachment site and binds with it and enter into the cell. Spike protein is split from the cleavage site along its two subunits S1 and S2 then during this process. S2 subunit release RBD (Receptor- Binding Domain) of S1 mediated to the ACE-2. The RBD of S1 consists of 200 amino acid domains. The unknown protein B6ATI which is a neutral amino acid transporter located in ileum is the basic cause for formation of ACE-2 homodimer. In this way S1 domain provides site for another S2 domain. This leads to concealing of the ACE-2 ectodomain cleavage-sites, shedding. It prevents endocytosis of the receptor blocking a major pathway in the viral entry.


Sign in / Sign up

Export Citation Format

Share Document