scholarly journals 3D confinement regulates stem cell fate

2021 ◽  
Author(s):  
Oksana Y. Dudaryeva ◽  
Aurelia Bucciarelli ◽  
Giovanni Bovone ◽  
Shabashish Jaydev ◽  
Nicolas Broguiere ◽  
...  

Biophysical properties of the cellular microenvironment, including stiffness and geometry, influence cell fate. Recent findings have implicated geometric confinement as an important regulator of cell fate determination. Our understanding of how mechanical signals direct cell fate is based primarily on two-dimensional (2D) studies. To investigate the role of confinement on stem cell fate in three-dimensional (3D) culture, we fabricated a single cell microwell culture platform and used it to investigate how niche volume and stiffness affect human mesenchymal stem cell (hMSC) fate. The viability and proliferation of hMSCs in confined 3D microniches were compared with the fate of unconfined cells in 2D culture. Physical confinement biased hMSC fate, and this influence was modulated by the niche volume and stiffness. The rate of cell death increased, and proliferation markedly decreased upon 3D confinement. We correlated the observed differences in hMSC fate to YES-associated protein (YAP) localization. In 3D microniches, hMSCs displayed primarily cytoplasmic YAP localization, indicating reduced mechanical activation upon confinement. These results demonstrate that 3D geometric confinement can be an important regulator of cell fate, and that confinement sensing is linked to canonical mechanotransduction pathways.

2012 ◽  
Vol 72 (7) ◽  
pp. 1068-1084 ◽  
Author(s):  
Allison M. Bond ◽  
Oneil G. Bhalala ◽  
John A. Kessler

2019 ◽  
Vol 106 ◽  
pp. 49-56 ◽  
Author(s):  
Natalia Sánchez-Romero ◽  
Pilar Sainz-Arnal ◽  
Iris Pla-Palacín ◽  
Pablo Royo Dachary ◽  
Helen Almeida ◽  
...  

2005 ◽  
Vol 14 (2) ◽  
pp. 140-152 ◽  
Author(s):  
Gurudutta U. Gangenahalli ◽  
Pallavi Gupta ◽  
Daman Saluja ◽  
Yogesh K. Verma ◽  
Vimal Kishore ◽  
...  

2020 ◽  
Vol 21 (17) ◽  
pp. 6181
Author(s):  
Sara Cruciani ◽  
Giuseppe Garroni ◽  
Francesca Balzano ◽  
Renzo Pala ◽  
Emanuela Bellu ◽  
...  

Fat tissue represents an important source of adipose-derived stem cells (ADSCs), which can differentiate towards several phenotypes under certain stimuli. Definite molecules as vitamin D are able to influence stem cell fate, acting on the expression of specific genes. In addition, miRNAs are important modulating factors in obesity and numerous diseases. We previously identified specific conditioned media able to commit stem cells towards defined cellular phenotypes. In the present paper, we aimed at evaluating the role of metformin on ADSCs differentiation. In particular, ADSCs were cultured in a specific adipogenic conditioned medium (MD), in the presence of metformin, alone or in combination with vitamin D. Our results showed that the combination of the two compounds is able to counteract the appearance of an adipogenic phenotype, indicating a feedforward regulation on vitamin D metabolism by metformin, acting on CYP27B1 and CYP3A4. We then evaluated the role of specific epigenetic modulating genes and miRNAs in controlling stem cell adipogenesis. The combination of the two molecules was able to influence stem cell fate, by modulating the adipogenic phenotype, suggesting their possible application in clinical practice in counteracting uncontrolled lipogenesis and obesity-related diseases.


Nature ◽  
2002 ◽  
Vol 416 (6883) ◽  
pp. 854-860 ◽  
Author(s):  
Emi K. Nishimura ◽  
Siobhán A. Jordan ◽  
Hideo Oshima ◽  
Hisahiro Yoshida ◽  
Masatake Osawa ◽  
...  

Stem Cells ◽  
2010 ◽  
pp. N/A-N/A ◽  
Author(s):  
Stuart Avery ◽  
Gaetano Zafarana ◽  
Paul J. Gokhale ◽  
Peter W. Andrews

2009 ◽  
Vol 4 (4) ◽  
pp. 561-578 ◽  
Author(s):  
Sheena Abraham ◽  
Nikolai Eroshenko ◽  
Raj R Rao

Sign in / Sign up

Export Citation Format

Share Document