scholarly journals Definitive Hematopoietic Stem Cells Minimally Contribute to Embryonic Hematopoiesis

2021 ◽  
Author(s):  
Bianca A Ulloa ◽  
Samima S Habbsa ◽  
Kathryn S Potts ◽  
Alana Lewis ◽  
Mia McKinstry ◽  
...  

Hematopoietic stem cells (HSCs) are rare cells that arise in the embryo and sustain adult hematopoiesis. Although the functional potential of nascent HSCs is detectable by transplantation, their native contribution during development is unknown, in part due to the overlapping genesis and marker gene expression with other embryonic blood progenitors. Using single cell transcriptomics, we defined gene signatures that distinguish nascent HSCs from embryonic blood progenitors. Applying a new lineage tracing approach, we selectively tracked HSC output in situ and discovered significantly delayed lymphomyeloid contribution. Using a novel inducible HSC injury model, we demonstrated a negligible impact on larval lymphomyelopoiesis following HSC depletion. HSCs are not merely dormant at this developmental stage as they showed robust regeneration after injury. Combined, our findings illuminate that nascent HSCs self-renew but display differentiation latency, while HSC-independent embryonic progenitors sustain developmental hematopoiesis. Understanding the differences among embryonic HSC and progenitor populations will guide improved de novo generation and expansion of functional HSCs.

Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Author(s):  
Wanbo Tang ◽  
Jian He ◽  
Tao Huang ◽  
Zhijie Bai ◽  
Chaojie Wang ◽  
...  

In the aorta-gonad-mesonephros (AGM) region of mouse embryos, pre-hematopoietic stem cells (pre-HSCs) are generated from rare and specialized hemogenic endothelial cells (HECs) via endothelial-to-hematopoietic transition, followed by maturation into bona fide hematopoietic stem cells (HSCs). As HECs also generate a lot of hematopoietic progenitors not fated to HSCs, powerful tools that are pre-HSC/HSC-specific become urgently critical. Here, using the gene knockin strategy, we firstly developed an Hlf-tdTomato reporter mouse model and detected Hlf-tdTomato expression exclusively in the hematopoietic cells including part of the immunophenotypic CD45– and CD45+ pre-HSCs in the embryonic day (E) 10.5 AGM region. By in vitro co-culture together with long-term transplantation assay stringent for HSC precursor identification, we further revealed that unlike the CD45– counterpart in which both Hlf-tdTomato-positive and negative sub-populations harbored HSC competence, the CD45+ E10.5 pre-HSCs existed exclusively in Hlf-tdTomato-positive cells. The result indicates that the cells should gain the expression of Hlf prior to or together with CD45 to give rise to functional HSCs. Furthermore, we constructed a novel Hlf-CreER mouse model and performed time-restricted genetic lineage tracing by a single dose induction at E9.5. We observed the labeling in E11.5 AGM precursors and their contribution to the immunophenotypic HSCs in fetal liver (FL). Importantly, these Hlf-labeled early cells contributed to and retained the size of the HSC pool in the bone marrow (BM), which continuously differentiated to maintain a balanced and long-term multi-lineage hematopoiesis in the adult. Therefore, we provided another valuable mouse model to specifically trace the fate of emerging HSCs during development.


2021 ◽  
Author(s):  
Xu Fan ◽  
Pei Lu ◽  
Xianghua Cui ◽  
Peng Wu ◽  
Weiran Lin ◽  
...  

Abstract Kupffer cells (KCs) originate from yolk sac progenitors before birth, but the origin of repopulating KCs in adult remains unclear. In current study, we firstly traced the fate of preexisting KCs and that of monocytic cells with tissue-resident macrophage-specific and monocytic cell-specific fate mapping mouse models, respectively, and found no evidences that repopulating KCs originate from preexisting KCs or MOs. Secondly, we performed genetic lineage tracing to determine the type of progenitor cells involved in response to KC depletion in mice, and found that in response to KC depletion, hematopoietic stem cells (HSCs) proliferated in the bone marrow, mobilized into the blood, adoptively transferred into the liver and differentiated into KCs. Finally, we traced the fate of HSCs in a HSC-specific fate-mapping mouse model, in context of chronic liver inflammation induced by repeated carbon tetrachloride treatment, and confirmed that repopulating KCs originated directly from HSCs. Taken together, these findings provided in vivo fate-mapping evidences that repopulating KCs originate directly from hematopoietic stem cells, which present a completely novel understanding of the cellular origin of repopulating Kupffer Cells and shedding light on the divergent roles of KCs in liver homeostasis and diseases.


Blood ◽  
2013 ◽  
Vol 122 (25) ◽  
pp. 4035-4046 ◽  
Author(s):  
Igor I. Slukvin

Abstract Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.


2018 ◽  
Vol 2 (11) ◽  
pp. 1220-1228 ◽  
Author(s):  
Richard H. Chapple ◽  
Yu-Jung Tseng ◽  
Tianyuan Hu ◽  
Ayumi Kitano ◽  
Makiko Takeichi ◽  
...  

Key Points HSCs contribute robustly to steady-state hematopoiesis. Platelets receive extensive influx from HSCs compared with other myeloid or lymphoid cells.


Blood ◽  
1994 ◽  
Vol 84 (1) ◽  
pp. 74-83 ◽  
Author(s):  
SJ Szilvassy ◽  
S Cory

Abstract Efficient gene delivery to multipotential hematopoietic stem cells would greatly facilitate the development of effective gene therapy for certain hematopoietic disorders. We have recently described a rapid multiparameter sorting procedure for significantly enriching stem cells with competitive long-term lymphomyeloid repopulating ability (CRU) from 5-fluorouracil (5-FU)-treated mouse bone marrow. The sorted cells have now been tested as targets for retrovirus-mediated delivery of a marker gene, NeoR. They were cocultured for 4 days with fibroblasts producing a high titer of retrovirus in medium containing combinations of the hematopoietic growth factors interleukin-3 (IL-3), IL-6, c-kit ligand (KL), and leukemia inhibitory factor (LIF) and then injected into lethally irradiated recipients, together with sufficient “compromised” bone marrow cells to provide short-term support. Over 80% of the transplanted mice displayed high levels (> or = 20%) of donor- derived leukocytes when analyzed 4 to 6 months later. Proviral DNA was detected in 87% of these animals and, in half of them, the majority of the hematopoietic cells were marked. Thus, infection of the stem cells was most effective. The tissue and cellular distribution of greater than 100 unique clones in 55 mice showed that most sorted stem cells had lymphoid as well as myeloid repopulating potential. Secondary transplantation provided strong evidence for infection of very primitive stem cells because, in several instances, different secondary recipients displayed in their marrow, spleen, thymus and day 14 spleen colony-forming cells the same proviral integration pattern as the primary recipient. Neither primary engraftment nor marking efficiency varied for stem cells cultured in IL-3 + IL-6, IL-3 + IL-6 + KL, IL-3 + IL-6 + LIF, or all four factors, but those cultured in IL-3 + IL-6 + LIF appeared to have lower secondary engraftment potential. Provirus expression was detected in 72% of the strongly marked mice, albeit often at low levels. Highly efficient retroviral marking of purified lymphomyeloid repopulating stem cells should enhance studies of stem cell biology and facilitate analysis of genes controlling hematopoietic differentiation and transformation.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1287-1287
Author(s):  
Sheng Zhou ◽  
Soghra Fatima ◽  
Brian P. Sorrentino

Abstract Abstract 1287 Abcg2 is a member of the ATP-binding cassette transporter family, is expressed in adult hematopoietic stem cells (HSCs), and is required for the side population phenotype of adult bone marrow HSCs as well as other adult tissue-specific stem cells. We have used these properties of Abcg2 expression for lineage tracing of stem cell development in mice, particularly for HSCs. An ires-CreERT2 cassette was inserted into the Abcg2 locus, down-stream of its stop codon but upstream of its endogenous polyadenylation site, so that both Abcg2 and CreER are co-expressed from a single bicistronic transcript. This design allows for minimum disruption of Abcg2 expression and tissue specific expression of CreERT2 under the control of endogenous Abcg2 transcription elements. The Abcg2CreER/CreER mouse was crossed with flox-STOP-flox-YFP (Rosa26RYFP/YFP) mouse to generate compound heterozygous Abcg2CreER/+ Rosa26RYFP/+ mice. Treatment of adult Abcg2CreER/+ Rosa26RYFP/+ mice with tamoxifen resulted in robust YFP expression in kidney proximal tubule cells and hepatocytes demonstrating the expected tissue-specific expression of the Abcg2CreER allele. We also observed tamoxifen-dependent appearance of YFP+ cells in all hematopoietic lineages in the peripheral blood and bone marrow, confirming our prior observations that Abcg2 is expressed in adult stem cells. Unexpectedly, we observed long term marking in intestinal epithelial cells and in seminiferous tubules 9 to 20 months after tamoxifen treatment, recapitulating classic progeny tracking patterns, proving that intestinal stem cells and spermatogonial stem cells express the Abcg2 marker. Pregnant females were treated with a single dose of 4-hydroxytamoxifen (4-HT) at gestational days E7.5 and E8.5 using overnight timed breeding pairs. We chose 4-HT rather than tamoxifen because 4-HT has been shown to decay relatively quickly in the fetus so that no recombination can occur 24 hours after the pulse. After maternal treatment, mice were born, grew to adulthood, and were analyzed 14–17 weeks after birth for expression of YFP in distinct peripheral blood lineages. In the majority of the 18 mice born from mothers treated with 4-HT at day E7.5 and from 17 mice born of mothers treated at day E8.5, a small but distinct YFP+ subpopulation could be clearly detected in all hematopoietic lineages (Figure A and B). The numbers of marked cells have been stable for approximately 4 months and are strictly dependent on 4-HT treatment of the mother. These results demonstrate that a precursor to adult hematopoietic stem cells exists at gestational day E7.5 to E8.5 and contributes to a stable subpopulation of HSCs well into adulthood. The low level of marking could reflect inefficient recombination due to either relatively low levels of expression of the recombinant allele in these embryonic HSC precursors or due to inefficient nuclear localization with the single 4-HT pulse. Alternatively, these marked embryonic HSC precursors may be generating only a minor population of adult HSCs that are competing against a larger fraction of HSCs that arise from precursors that originate later in gestation after the 24 hour 4-HT washout. We are in the process of determining the embryonic source of the E7.5 – E8.5 adult HSC precursor and have not yet determined whether it originates in the yolk sac, in another extra-embryonic source, or within the embryo proper. We are following these mice for longer periods of time to determine the stability of marking in primary and serial transplant experiments. Altogether, we expect that studies with this novel lineage tracing model will provide a better understanding of steady-state, uninterrupted embryonic hematopoietic development that does not require transplant assays to detect HSC activity. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (24) ◽  
pp. 2765-2769 ◽  
Author(s):  
Anna E. Beaudin ◽  
E. Camilla Forsberg

Abstract Hematopoietic stem cells (HSCs) have long been considered the continuous source of all hematopoietic cells for the life of an individual. Recent findings have questioned multiple aspects of this view, including the ability of lifelong HSCs to contribute to tissue-resident immune cells. Here we discuss the most recent findings on the source of B1a cells, innatelike lymphocytes that primarily reside in serous cavities. Powerful experimental approaches including bar coding, single cell transplantation, in vivo lineage tracing, and HSC-specific pulse-chase labeling have provided novel insights on B1a-cell generation during ontogeny. We evaluate the evidence for fetal vs adult B1a-cell production capacity and the identity of putative cells of origin. Integrating these most recent findings with previous work, we propose a working model that encapsulates our current understanding of waves of immune development.


2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
S Ellis ◽  
M Palatsides ◽  
S Asquith ◽  
B Aisbett ◽  
H Johnston ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document