scholarly journals Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells

Blood ◽  
2013 ◽  
Vol 122 (25) ◽  
pp. 4035-4046 ◽  
Author(s):  
Igor I. Slukvin

Abstract Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1281-1281
Author(s):  
Martina Konantz ◽  
Matthias Grauer ◽  
Sarah Grzywna ◽  
Martijn Brugman ◽  
Lothar Kanz ◽  
...  

Abstract Abstract 1281 The Evi-1 locus was originally identified as a common site of retroviral integration in murine myeloid tumors. Over the last years, Evi-1 evolved as one of the most potent oncogenes associated with human and murine myeloid leukemia. More recent studies in knockout mice suggest also involvement of Evi-1 in the regulation of developmental hematopoiesis, but the role of Evi-1 in this context is poorly understood. Here, we analyzed zebrafish embryo and human pluripotent stem cells (PSC) to understand how Evi-1 modulates early hematopoietic development. We examined the hematopoietic development in zebrafish embryo by in situ hybridization (ISH) for hematopoietic markers. The zebrafish homologue evi-1 was shown to be expressed in co-localization with scl in the posterior blood islands, indicating a role during early blood development. We also performed loss-of-function studies were by injecting morpholino oligonucleotides (MO) in zebrafish zygotes to inhibit evi-1 pre-mRNA splicing. Inhibition of evi-1 was confirmed in MO-injected versus control embryos. N=100 zebrafish embryos were analyzed per experiment in each group. To control for off-target effects, two separate MO were designed and injected. MO mediated evi-1 knockdown severely reduced numbers of circulating blood cells and induced hemorrhages. ISH performed in evi-1 morphants versus control fish revealed strongly impaired formation of myeloid embryonic cells (measured by pu.1 expression), while no changes were observed in primitive erythroid progenitor cells (monitored by gata1 expression) or overall in blood and endothelial precursors in the posterior lateral plate mesoderm (as monitored by scl expression). Moreover, analyses at 36 hours and 5 days post fertilization showed strong reduction of runx1+/cmyb+ cells and rag1+ lymphoid cells, indicating a role of evi-1 in developing hematopoietic stem cells (HSC). Previous reports in adult murine hematopoietic cells suggest that Evi-1 affects hematopoietic stem cell proliferation through regulation of Gata2. To test whether Gata2 is a putative downstream regulator of Evi-1 in our system, we performed a rescue experiment and co-injected gata2 mRNA in evi-1 MO treated fish. Indeed, ectopic gata2 rescued the impaired myeloid phenotype, as shown by re-occurrence of mpo, l-plastin as well as pu.1 expressing cells. To assess whether these molecular interactions are conserved during human developmental hematopoiesis, we surveyed in vitro differentiating human pluripotent stem cells (PSC) genetically modified to suppress EVI-1. EVI-1 expression was detected during differentiation of human PSC in embryoid bodies, especially around day 9 when hematopoietic progenitors start to emerge in this system. Treatment with EVI-1 shRNA strongly reduced the generation of myeloid colonies from human PSC in vitro as well as the numbers of emerging CD34+ and CD45+ cells. Molecularly, EVI-1 suppression inhibited the expression of PU.1 and GATA2 during the course of development, while leaving SCL and GATA1 expression unaltered. Taken together, our data suggest that, in both fish and human, Evi-1 regulates embryonic myelopoiesis through interactions with Gata2 and independently of Gata1 and embryonic erythropoiesis. Moreover, Evi-1 appears crucial for HSC development. Currently ongoing experiments in our laboratory focus on the further elucidation of the molecular mechanisms underlying the Evi-1 effects during developmental hematopoiesis. Disclosures: No relevant conflicts of interest to declare.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 951 ◽  
Author(s):  
Yong Dong ◽  
Chengxiang Xia ◽  
Qitong Weng ◽  
Tongjie Wang ◽  
Fangxiao Hu ◽  
...  

Natural hematopoietic stem cells (HSC) are susceptible and tend to lose stemness, differentiate, or die on culture condition in vitro, which adds technical challenge for maintaining bona fide HSC-like cells, if ever generated, in protocol screening from pluripotent stem cells. It remains largely unknown whether gene-editing of endogenous genes can genetically empower HSC to endure the culture stress and preserve stemness. In this study, we revealed that both NUP98-HOXA10HD fusion and endogenous Nras mutation modifications (NrasG12D) promoted the engraftment competitiveness of HSC. Furthermore, the synergy of these two genetic modifications endowed HSC with super competitiveness in vivo. Strikingly, single NAV-HSC successfully maintained its stemness and showed robust multi-lineage engraftments after undergoing the in vitro culture. Mechanistically, NUP98-HOXA10HD fusion and NrasG12D mutation distinctly altered multiple pathways involving the cell cycle, cell division, and DNA replication, and distinctly regulated stemness-related genes including Hoxa9, Prdm16, Hoxb4, Trim27, and Smarcc1 in the context of HSC. Thus, we develop a super-sensitive transgenic model reporting the existence of HSC at the single cell level on culture condition, which could be beneficial for protocol screening of bona fide HSC regeneration from pluripotent stem cells in vitro.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Stephanie A Luff ◽  
J Philip Creamer ◽  
Carissa Dege ◽  
Rebecca Scarfò ◽  
Samantha Morris ◽  
...  

The generation of the hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. In the embryo, HSCs derive from a HOXA+ population known as hemogenic endothelium (HE) in a retinoic acid (RA)-dependent manner. Using hPSCs, we have previously identified a KDR+CD235a− mesodermal population that gives rise to a clonally multipotent HOXA+ definitive HE. However, this HE lacks HSC-like capacity in the absence of exogenous transgenes and is functionally unresponsive to RA treatment. Thus, the specification of an RA-dependent hematopoietic program from hPSCs has remained elusive. Through single cell RNA-seq (scRNA-seq) analyses, we identified that 2 distinct KDR+CD235a− populations exist prior to HE specification, distinguishable by CXCR4 expression. Interestingly, KDR+CD235a−CXCR4− mesoderm expressed CYP26A1, an RA degrading enzyme, and harbored definitive hematopoietic potential within hPSC differentiation cultures in the absence of RA signaling, indicating the HE specified from CXCR4− mesoderm as RA-independent (RAi). In sharp contrast, KDR+CD235a−CXCR4+ mesoderm exclusively expressed ALDH1A2, the key enzyme in the synthesis of RA, but lacked hematopoietic potential under the same culture conditions. However, the stage-specific application of RA signaling to CXCR4+ mesoderm resulted in the robust specification of CD34+HOXA+ HE with definitive erythroid, myeloid, and lymphoid hematopoietic potential, establishing this HE as RA-dependent (RAd). Furthermore, while RAi HE entirely failed to persist following murine hematopoietic xenografts, RAd HE transiently persisted within the peripheral blood and bone marrow of murine hosts. To assess whether these functionally distinct hPSC mesodermal progenitors are physiologically relevant to human embryonic development, we integrated scRNA-seq datasets from the hPSC mesodermal cultures and a gastrulating human embryo. These analyses revealed that in vivo, distinct KDR+CXCR4−CYP26A1+ and KDR+CXCR4+ALDH1A2+ populations can be found at the stage of emergent mesoderm, following patterning of nascent mesoderm. Additional comparison to later stage human embryos demonstrated that RAd HE has a more fetal-like HOXA expression pattern than RAi HE. Scoring of single fetal HE cells against hPSC-derived HE revealed that while some early fetal HE cells were similar to RAi HE, the late fetal HE cells, which are hypothesized to give rise to HSCs, were more similar to RAd HE. Lastly, as HSC-competent HE is expected to express arterial genes, we found a subset of late fetal HE with this phenotype that were exclusively similar to RAd HE. Collectively, these data represent the first ever characterization of RA-dependent hPSC-derived definitive hematopoiesis and its mesodermal progenitor. Additionally, we provide evidence for in vivo mesodermal and HE correlates for both RAi and RAd hematopoietic programs within human embryos. This novel insight into human hematopoietic development will serve as an important tool for modeling development and ultimately provide the basis for de novo specification of HSCs. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Lea Flippe ◽  
Anne Gaignerie ◽  
Celine Serazin ◽  
Olivier Baron ◽  
Xavier Saulquin ◽  
...  

Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells and lack of product standardization have limited its uses in the clinic. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinic access. However, despite their potential, the feasibility and functionality of T-cells differentiated from hPSCs needs better comprehension before moving to the clinic. In this study, we generated human induced pluripotent stem cells from T-cells (T-iPSCs) allowing preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated with high efficiency hematopoietic progenitor stem cells (HPSCs), capable of self-renewal and differentiation into any cell blood type, and then DN3a thymic progenitors from several T-iPSC lines. To better comprehend differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had a very similar profile to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, with this approach, we were able to regenerate precursors of therapeutic human T cells to potentially treat a wide number of diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Akhilesh Kumar ◽  
Saritha S. D’Souza ◽  
Abir S. Thakur

Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to createin vitromodels of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review howin vitrodifferentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3866-3866
Author(s):  
Masao Tsukada ◽  
Satoshi Yamazaki ◽  
Yasunori Ota ◽  
Hiromitsu Nakauchi

Abstract Introduction Generation of engraftable hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs) has long been thought an ultimate goal in the field of hematology. Numerous in vitro differentiation protocols, including trans-differentiation and forward programming approaches, have been reported but have so far failed to generate fully functional HSCs. We have previously demonstrated proof-of-concept for the in vivo generation of fully functional HSCs from induced PSCs (iPSCs) through teratoma formation (Suzuki et al., 2013). However, this method is time-consuming (taking over two months), HSCs are generated at low frequencies, and additionally require co-injection on OP9 stromal cells and SCF/TPO cytokines. Here, we present optimization of in vivo HSC generation via teratoma formation for faster, higher-efficiency HSC generation and without co-injection of stromal cells or cytokines. Results First, we screened reported in vitro trans-differentiation and forward programming strategies for their ability to generate HSCs in vivo within the teratoma assay. We tested iPSCs transduced with the following dox-inducible TF overexpression vectors: (1) Gfi1b, cFOS and Gata2 (GFG), which induce hemogenic endothelial-like cells from fibroblast (Pereira et al.,2013); (2) Erg, HoxA9 and Rora (EAR), which induce short-term hematopoietic stem/progenitor cell (HSPC) formation during embryoid body differentiation (Doulatov et,al., 2013); and (3) Foxc1, which is highly expressed the CAR cells, a critical cell type for HSC maintenance (Oomatsu et al.,2014). We injected iPSCs into recipient mice, without co-injection of stromal cells or cytokines, and induced TF expression after teratoma formation by dox administration. After four weeks, GFG-derived teratomas contained large numbers of endothelial-like and epithelial-like cells, and importantly GFG-derived hematopoietic cells could also be detected. EAR-teratomas also generated hematopoietic cells, although at lower frequencies. By contrast, hematopoietic cells were not detected in control teratomas or Foxc1-teratomas. Through use of iPSCs generated from Runx1-EGFP mice (Ng et al. 2010), and CUBIC 3D imaging technology (Susaki et al. 2014), we were further able to demonstrate that GFG-derived hematopoietic cells were generated through a haemogenic endothelium precursor. Next, we assessed whether HSPC-deficient recipient mice would allow greater expansion of teratoma-derived HSCs. This was achieved by inducing c-kit deletion within the hematopoietic compartment of recipient mice (Kimura et al., 2011) and resulted in a ten-fold increase in the peripheral blood frequency of iPSC-derived hematopoietic cells. We further confirmed similar increases in iPSC-derived bone marrow cells, and in vivo HSC expansion, through bone marrow transplantation assays. Finally, we have been able to shorten the HSC generation time in this assay by five weeks through use of transplantable teratomas, rather than iPSCs. Conclusions We have demonstrated that GFG-iPSCs induce HSC generation within teratomas, via a hemogenic endothelium precursor, and that use of HSPC-deficient recipient mice further promotes expansion of teratoma-derived HSCs. These modifications now allow us to generate engraftable HSCs without co-injection of stromal cells or cytokines. Additionally, use of transplantable teratomas reduced HSC generation times as compared with the conventional assay. These findings suggest that our in vivo system provides a promising strategy to generate engraftable HSCs from iPSCs. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1214-1214
Author(s):  
Harald Schulze ◽  
Silke Schwiebert ◽  
Kathrin Roth ◽  
Oliver Meyer ◽  
Gabriele Strauss ◽  
...  

Abstract Abstract 1214 Immune thrombocytopenia (ITP) is the most common acquired thrombocytopenia in children. Typically, external triggers as infections or vaccinations cause the rise of antibodies that crossreact with antigens expressed on the platelet surface. These anti-platelet antibodies are mostly directed against glycoprotein complexes GPIIb/IIIa or GPIb/IX/V, resulting in an increased turnover of antibody-decorated platelets which are then sequestered by the reticuloendothelial system. Recently, it has been suggested that thrombocytopenia might also be due to an insufficient platelet production as serum of some patients with ITP can impair the maturation of CD34+ hematopoietic stem cells to bone marrow megakaryocytes (MKs) in vitro or abrogate the formation of proplatelets in an in vitro culture system. The accelerated platelet turnover demands the generation of platelets de novo. Bone marrow smears often reveal normal or slightly increased MKs, although they seem to be smaller and of altered morphology. However, very little is known about the consequences of anti-platelet antibodies on bone marrow MKs in vivo and in situ. Here, we took advantage of a simple animal model of passive ITP by single or multiple intraperitoneal injections of an anti-GPIb antibody into mice. MKs were evaluated by multi-color immunofluorescence histology on whole femur sections in a modified staining procedure that bypasses decalcification. MK numbers on day 3 were doubled in response to a single injection and tripled on day 8 when mice were injected additionally on day 3 and 7. In these mice platelet counts were up to 2000/nL on day 10, indicating the power to produce platelets. MK area per section was transiently upregulated on day 3 in single injected mice and quadrupled after multiple injections on day 8 before shrinking below norm on day 14. Staining with an anti-rat IgG antibody showed that the antibody was present on MKs within the bone marrow several hours to days after injection. The signal was present for 5 days and no antibody was detected on day 7. MKs had an overall normal morphology and showed no signs of apoptosis or DNA blebbing. All MKs analyzed were negative for TdT in a classical TUNEL assay, indicating that there were no single strand breaks. As platelet counts rose markedly while the antibody was still present on the MK surface, we sought to identify whether the pool of MKs is expanded or formed de novo. To address this, mice where fed with nucleotide analogue EdU for up to 12 days and femur sections stained with Click-It-647 reagent to stain for newly incorporated DNA while mice were treated with anti-platelet antibody or isotype control. We found EdU-positive MKs after 12 days in control isotype-injected mice indicating the de novo formation from hematopoietic stem cells. In antibody-injected mice, newly formed MKs were negative or stained weakly for EdU on day 12, suggesting that they arise partially from an existing pool of progenitors. Finally, we analyzed platelet formation in vivo by imaging of the cranial bone marrow of GPIIb-eYFP-heterozygous mice. The depletion antibody was labeled with Atto-590-fluorophore and injected hours before imaging. Vasculature was counterstained by Quantum dots. We found that MKs residing at the bone marrow were decorated with the antibody and released pre- and proplatelets into the vasculature, indicating that platelet biogenesis can occur in the presence of anti-platelet antibodies on MKs. Our data thus provide novel insight into the pathomechanism of platelet production in patients with ITP. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 216 (7) ◽  
pp. 1599-1614 ◽  
Author(s):  
Tomomasa Yokomizo ◽  
Naoki Watanabe ◽  
Terumasa Umemoto ◽  
Junichi Matsuo ◽  
Ryota Harai ◽  
...  

Before the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs. Using the Hlf-tdTomato reporter mouse, we found that Hlf is expressed in intra-aortic hematopoietic clusters and fetal liver HSCs. In contrast, EMPs and yolk sac hematopoietic clusters before embryonic day 9.5 do not express Hlf. HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. These results strongly suggest that HSCs and EMPs are generated from distinct cohorts of hemogenic endothelium. Selective induction of the Hlf+ lineage pathway may lead to the in vitro generation of HSCs from pluripotent stem cells.


Blood ◽  
2015 ◽  
Vol 125 (17) ◽  
pp. 2641-2648 ◽  
Author(s):  
Linda T. Vo ◽  
George Q. Daley

Abstract Generating human hematopoietic stem cells (HSCs) from autologous tissues, when coupled with genome editing technologies, is a promising approach for cellular transplantation therapy and for in vitro disease modeling, drug discovery, and toxicology studies. Human pluripotent stem cells (hPSCs) represent a potentially inexhaustible supply of autologous tissue; however, to date, directed differentiation from hPSCs has yielded hematopoietic cells that lack robust and sustained multilineage potential. Cellular reprogramming technologies represent an alternative platform for the de novo generation of HSCs via direct conversion from heterologous cell types. In this review, we discuss the latest advancements in HSC generation by directed differentiation from hPSCs or direct conversion from somatic cells, and highlight their applications in research and prospects for therapy.


Sign in / Sign up

Export Citation Format

Share Document