scholarly journals The EphB2-MYC Axis is a Major Determinant of Barrett's Pathobiology and a Therapeutic Vulnerability in Esophageal Cancer

2021 ◽  
Author(s):  
Srividya Venkitachalam ◽  
Deepak Babu ◽  
Durgadevi Ravillah ◽  
Ramachandra M Katabathula ◽  
Peronne Joseph ◽  
...  

Esophageal adenocarcinoma (EAC), a highly aggressive cancer with limited therapeutic options, often arises in the backdrop of a molecularly-complex esophageal metaplasia disorder, Barrett's Esophagus (BE). Using transcriptomics and systems biology analyses of treatment-naïve malignant/pre-malignant biopsy tissues, we found Eph receptor B2 (EphB2) tyrosine kinase signaling to be frequently hyperactivated during early stages of EAC development, and across the BE-EAC continuum. Functional studies revealed EphB2 to be an upstream post-translational regulator of c-MYC activity and as a key molecular dependency in BE/EAC. Single-cell transcriptomics in a porcine esophageal 3D spheroid model showed enhanced EphB2 and MYC activity to be significantly associated with BE-like cell fate. shRNA-based knockdown of EphB2 or small molecule inhibitors of MEK, that modulate MYC protein stability, proved effective in suppressing EAC tumor growth in vivo. These findings point to EphB2-MYC axis as an early promoter of EAC and a novel therapeutic vulnerability in this increasingly-prevalent esophageal malignancy.

F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2108 ◽  
Author(s):  
Christopher Gregg

Epigenetic mechanisms that cause maternally and paternally inherited alleles to be expressed differently in offspring have the potential to radically change our understanding of the mechanisms that shape disease susceptibility, phenotypic variation, cell fate, and gene expression. However, the nature and prevalence of these effects in vivo have been unclear and are debated. Here, I consider major new studies of epigenetic allelic effects in cell lines and primary cells and in vivo. The emerging picture is that these effects take on diverse forms, and this review attempts to clarify the nature of the different forms that have been uncovered for genomic imprinting and random monoallelic expression (RME). I also discuss apparent discrepancies between in vitro and in vivo studies. Importantly, multiple studies suggest that allelic effects are prevalent and can be developmental stage- and cell type-specific. I propose some possible functions and consider roles for allelic effects within the broader context of gene regulatory networks, cellular diversity, and plasticity. Overall, the field is ripe for discovery and is in need of mechanistic and functional studies.


2021 ◽  
Author(s):  
Chunbao Zang ◽  
Fangfang Zhao ◽  
Dabing Huang ◽  
Lingsuo Kong ◽  
Minghua Xie ◽  
...  

Abstract Background : N 6 -methyladenosine (m 6 A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in esophageal cancer remain elusive. Methods : Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of FTO. Western blot, quantitative real-time PCR (RT-qPCR) and immunohistochemical (IHC) were used to detect FTO expression in cell lines and patient tissues. The biological functions of FTO were investigated in vitro and in vivo . RNA pull-down and RNA immunoprecipitation assays were conducted to explore the specific binding of target genes. Results : We discovered that the RNA demethylase FTO was significantly up-regulated in esophageal cancer patients. Knockdown of FTO drastically reduced esophageal cancer cells (ESCCs) proliferation, migration, invasion, and apoptosis. On the other hand, overexpression of FTO significantly promoted ESCCs growth and invasion. Moreover, we found that the m 6 A methyltransferase METTL14 negatively correlates with FTO function on esophageal cancer progression. By using transcriptome-wide m 6 A-Seq and RNA-Seq assays, we identified AKT3 is the target of FTO, which acts in concert in esophageal cancer tumorigenesis and metastasis. Moreover, loss and gain functional studies confirm that YTHDF1 mediates m 6 A-increased translation of AKT3 mRNA. Conclusion : Our results uncovered an METTL14/FTO/YTHDF1/AKT3 signaling network that regulates the esophageal cancer progression.


2018 ◽  
Author(s):  
Jerome Bonnefont ◽  
Luca Tiberi ◽  
Jelle van den Ameele ◽  
Delphine Potier ◽  
Zachary B Gaber ◽  
...  

SummaryDuring neurogenesis, progenitors switch from self-renewal to differentiation through the interplay of intrinsic and extrinsic cues, but how these are integrated remains poorly understood. Here we combine whole genome transcriptional and epigenetic analyses with in vivo functional studies and show that Bcl6, a transcriptional repressor known to promote neurogenesis, acts as a key driver of the neurogenic transition through direct silencing of a selective repertoire of genes belonging to multiple extrinsic pathways promoting self-renewal, most strikingly the Wnt pathway. At the molecular level, Bcl6 acts through both generic and pathway-specific mechanisms. Our data identify a molecular logic by which a single cell-intrinsic factor ensures robustness of neural cell fate transition by decreasing responsiveness to the extrinsic pathways that favor self-renewal.


2021 ◽  
Author(s):  
Chunbao Zang ◽  
Fangfang Zhao ◽  
Dabing Huang ◽  
Lingsuo Kong ◽  
Minghua Xie ◽  
...  

Abstract Background N6-methyladenosine (m6A) is the most abundant modification in eukaryotic messenger RNAs (mRNAs), and plays important roles in many bioprocesses. However, its functions in esophageal cancer (ES) remain elusive. Methods Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and transcriptomic RNA sequencing (RNA-seq) were used to screen the target genes of FTO. Western blot, quantitative real-time PCR (RT-qPCR) and immunohistochemical (IHC) were used to detect FTO expression in cell lines and patient tissues. The biological functions of FTO were investigated in vitro and in vivo. RNA pull-down and RNA immunoprecipitation assays were conducted to explore the specific binding of target genes. Results We discovered that the RNA demethylase FTO was significantly up-regulated in human ES. Knockdown of FTO drastically reduced ESCCs cell proliferation, migration, invasion, and apoptosis in the ESCCs. On the other hand, overexpression of FTO significantly promoted ESCCs growth and invasion. Moreover, we found that the m6A methyltransferase METTL14 negatively correlates with FTO function on ES progression. By using transcriptome-wide m6A-Seq and RNA-Seq assays, we identified AKT3 is the target of FTO, which acts in concert in esophageal cancer tumorigenesis and metastasis. Moreover, loss and gain functional studies confirm that YTHDF1 mediates m6A-increased translation of AKT3 mRNA. Conclusion Our results uncovered an METTL14/FTO/YTHDF1/AKT3 signaling network that regulates the ES progression.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii406-iii406
Author(s):  
Kübra Taban ◽  
David Pauck ◽  
Mara Maue ◽  
Viktoria Marquardt ◽  
Hua Yu ◽  
...  

Abstract Medulloblastoma (MB) is the most common malignant brain tumor in children and is frequently metastatic at diagnosis. Treatment with surgery, radiation and multi-agent chemotherapy may leave survivors of these brain tumors with long-term deficits as a consequence. One of the four consensus molecular subgroups of MB is the MYC-driven group 3 MB, which is the most malignant type and has a poor prognosis under current therapy. Thus, it is important to discover more effective targeted therapeutic approaches. We conducted a high-throughput drug screening to identify novel compounds showing efficiency in group 3 MB using both clinically established inhibitors (n=196) and clinically-applicable compounds (n=464). More than 20 compounds demonstrated a significantly higher anti-tumoral effect in MYChigh (n=7) compared to MYClow (n=4) MB cell models. Among these compounds, Navitoclax and Clofarabine showed the strongest effect in inducing cell cycle arrest and apoptosis in MYChigh MB models. Furthermore, we show that Navitoclax, an orally bioavailable and blood-brain barrier passing anti-cancer drug, inhibits specifically Bcl-xL proteins. In line, we found a significant correlation between BCL-xL and MYC mRNA levels in 763 primary MB patient samples (Data source: “R2 https://hgserver1.amc.nl”). In addition, Navitoclax and Clofarabine have been tested in cells obtained from MB patient-derived-xenografts, which confirmed their specific efficacy in MYChigh versus MYClow MB. In summary, our approach has identified promising new drugs that significantly reduce cell viability in MYChigh compared to MYClow MB cell models. Our findings point to novel therapeutic vulnerabilities for MB that need to be further validated in vitro and in vivo.


Genes ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 712
Author(s):  
Ji-Hea Yu ◽  
Bae-Geun Nam ◽  
Min-Gi Kim ◽  
Soonil Pyo ◽  
Jung-Hwa Seo ◽  
...  

White matter atrophy has been shown to precede the massive loss of striatal GABAergic neurons in Huntington’s disease (HD). This study investigated the effects of in vivo expression of reprogramming factor octamer-binding transcription factor 4 (OCT4) on neural stem cell (NSC) niche activation in the subventricular zone (SVZ) and induction of cell fate specific to the microenvironment of HD. R6/2 mice randomly received adeno-associated virus 9 (AAV9)-OCT4, AAV9-Null, or phosphate-buffered saline into both lateral ventricles at 4 weeks of age. The AAV9-OCT4 group displayed significantly improved behavioral performance compared to the control groups. Following AAV9-OCT4 treatment, the number of newly generated NSCs and oligodendrocyte progenitor cells (OPCs) significantly increased in the SVZ, and the expression of OPC-related genes and glial cell-derived neurotrophic factor (GDNF) significantly increased. Further, amelioration of myelination deficits in the corpus callosum was observed through electron microscopy and magnetic resonance imaging, and striatal DARPP32+ GABAergic neurons significantly increased in the AAV9-OCT4 group. These results suggest that in situ expression of the reprogramming factor OCT4 in the SVZ induces OPC proliferation, thereby attenuating myelination deficits. Particularly, GDNF released by OPCs seems to induce striatal neuroprotection in HD, which explains the behavioral improvement in R6/2 mice overexpressing OCT4.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Monika Oláhová ◽  
Bradley Peter ◽  
Zsolt Szilagyi ◽  
Hector Diaz-Maldonado ◽  
Meenakshi Singh ◽  
...  

AbstractWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype. Massive parallel sequencing of all subjects identifies recessive and dominant variants in the POLRMT gene. Patient fibroblasts have a defect in mitochondrial mRNA synthesis, but no mtDNA deletions or copy number abnormalities. The in vitro characterisation of the recombinant POLRMT mutants reveals variable, but deleterious effects on mitochondrial transcription. Together, our in vivo and in vitro functional studies of POLRMT variants establish defective mitochondrial transcription as an important disease mechanism.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Qingxia Wei ◽  
Olivia Singh ◽  
Can Ekinci ◽  
Jaspreet Gill ◽  
Mira Li ◽  
...  

AbstractOne of the most prominent features of glioblastoma (GBM) is hyper-vascularization. Bone marrow-derived macrophages are actively recruited to the tumor and referred to as glioma-associated macrophages (GAMs) which are thought to provide a critical role in tumor neo-vascularization. However, the mechanisms by which GAMs regulate endothelial cells (ECs) in the process of tumor vascularization and response to anti-angiogenic therapy (AATx) is not well-understood. Here we show that GBM cells secrete IL-8 and CCL2 which stimulate GAMs to produce TNFα. Subsequently, TNFα induces a distinct gene expression signature of activated ECs including VCAM-1, ICAM-1, CXCL5, and CXCL10. Inhibition of TNFα blocks GAM-induced EC activation both in vitro and in vivo and improve survival in mouse glioma models. Importantly we show that high TNFα expression predicts worse response to Bevacizumab in GBM patients. We further demonstrated in mouse model that treatment with B20.4.1.1, the mouse analog of Bevacizumab, increased macrophage recruitment to the tumor area and correlated with upregulated TNFα expression in GAMs and increased EC activation, which may be responsible for the failure of AATx in GBMs. These results suggest TNFα is a novel therapeutic that may reverse resistance to AATx. Future clinical studies should be aimed at inhibiting TNFα as a concurrent therapy in GBMs.


Sign in / Sign up

Export Citation Format

Share Document