scholarly journals A quantitative map of nuclear pore assembly reveals two distinct mechanisms

2021 ◽  
Author(s):  
Shotaro Otsuka ◽  
Jeremy O.B. Tempkin ◽  
Antonio Z. Politi ◽  
Arina Rybina ◽  
M. Julius Hossain ◽  
...  

Understanding how the nuclear pore complex (NPC) assembles is of fundamental importance to grasp the mechanisms behind its essential function and understand its role during evolution of eukaryotes. While we know that at least two NPC assembly pathways exist, one during exit from mitosis and one during nuclear growth in interphase, we currently lack a quantitative map of their molecular events. Here, we use fluorescence correlation spectroscopy (FCS) calibrated live imaging of endogenously fluorescently-tagged nucleoporins to map the changes in composition and stoichiometry of seven major modules of the human NPC during its assembly in single dividing cells. This systematic quantitative map reveals that the two assembly pathways employ strikingly different molecular mechanisms, inverting the order of addition of two large structural components, the central ring complex and nuclear filaments. Our dynamic stoichiometry data allows us to perform the first computational simulation that predicts the structure of postmitotic NPC assembly intermediates.

2021 ◽  
Vol 49 (4) ◽  
pp. 1547-1554
Author(s):  
Laura E. Kilpatrick ◽  
Stephen J. Hill

It has become increasingly apparent that some G protein-coupled receptors (GPCRs) are not homogeneously expressed within the plasma membrane but may instead be organised within distinct signalling microdomains. These microdomains localise GPCRs in close proximity with other membrane proteins and intracellular signalling partners and could have profound implications for the spatial and temporal control of downstream signalling. In order to probe the molecular mechanisms that govern GPCR pharmacology within these domains, fluorescence techniques with effective single receptor sensitivity are required. Of these, fluorescence correlation spectroscopy (FCS) is a technique that meets this sensitivity threshold. This short review will provide an update of the recent uses of FCS based techniques in conjunction with GPCR subtype selective fluorescent ligands to characterise dynamic ligand–receptor interactions in whole cells and using purified GPCRs.


2017 ◽  
Author(s):  
Shotaro Otsuka ◽  
Anna M. Steyer ◽  
Martin Schorb ◽  
Jean-Karim Hériché ◽  
M. Julius Hossain ◽  
...  

AbstractThe nuclear envelope has to be reformed after mitosis to create viable daughter cells with closed nuclei. How membrane sealing of DNA and assembly of nuclear pore complexes (NPCs) are achieved and coordinated is poorly understood. Here, we reconstructed nuclear membrane topology and structure of assembling NPCs in a correlative three dimensional electron microscopy time-course of dividing human cells. Our quantitative ultrastructural analysis shows that nuclear membranes form from highly fenestrated ER sheets, whose shrinking holes are stabilized and then dilated into NPCs during inner ring complex assembly, forming thousands of transport channels within minutes. This mechanism is fundamentally different from interphase NPC assembly and explains how mitotic cells can rapidly establish a closed nuclear compartment while making it transport-competent at the same time.


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 802 ◽  
Author(s):  
Rumiana Tzoneva ◽  
Tihomira Stoyanova ◽  
Annett Petrich ◽  
Desislava Popova ◽  
Veselina Uzunova ◽  
...  

Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid–lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells.


2005 ◽  
Vol 62 (5) ◽  
pp. 535-550 ◽  
Author(s):  
V. Vukojević ◽  
A. Pramanik ◽  
T. Yakovleva ◽  
R. Rigler ◽  
L. Terenius ◽  
...  

2020 ◽  
Author(s):  
R. Tzoneva ◽  
T. Stoyanova ◽  
A. Petrich ◽  
D. Popova ◽  
A. Momchilova ◽  
...  

ABSTRACTAlkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, Erufosine (EPC3) is a promising drug for the treatment of several types of tumors which has not been sufficiently characterized. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy techniques (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy and generalized polarization imaging) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid-lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 might be linked to its effects on fundamental biophysical properties of lipid membranes in cancer cells.


2019 ◽  
Author(s):  
Àngels Mateu-Regué ◽  
Jan Christiansen ◽  
Frederik Otzen Bagger ◽  
Christian Hellriegel ◽  
Finn Cilius Nielsen

SummarySmall cytoplasmic mRNP granules are implicated in mRNA transport, translational control and decay. Employing Super-resolution Microscopy and Fluorescence Correlation Spectroscopy, we analyzed the molecular composition and dynamics of single cytoplasmic YBX1_IMP1 mRNP granules in live cells. Granules appeared elongated and branched with patches of IMP1 and YBX1 distributed along mRNA, reflecting the attachment of the two RNA-binding proteins in cis. Particles form at the nuclear pore and are spatially segregated from translating ribosomes, so the mRNP is a repository for mRNAs awaiting translation. In agreement with the average number of mRNA-binding sites derived from CLIP analyses, individual mRNPs contain 5 to 15 molecules of YBX1 and IMP1 and a single poly(A) tail identified by PABPC1. Taken together, we conclude that small cytoplasmic mRNP granules are mRNA singletons, thus depicting the cellular transcriptome. Consequently, expression of functionally related mRNAs in RNA regulons is unlikely to result from coordinated assembly.


Sign in / Sign up

Export Citation Format

Share Document