scholarly journals Deep hierarchical sensory processing accounts for effects of arousal state on perceptual decision-making

2021 ◽  
Author(s):  
Lynn K. A. Sörensen ◽  
Sander M. Bohté ◽  
Heleen A Slagter ◽  
H. Steven Scholte

An organism's level of arousal strongly affects task performance. Yet, what level of arousal is optimal for performance depends on task difficulty. For easy tasks, performance is best at higher arousal levels, whereas arousal levels show an inverted-U-shaped relationship with performance for difficult tasks, with best performance at medium arousal levels. This interaction between arousal and task difficulty is known as the Yerkes-Dodson effect (1908) and is thought to reflect sensory decision-making in the locus coeruleus and associated widespread release of noradrenaline. Yet, this account does not explain why perceptual performance decays with high levels of arousal in difficult, but not in simple tasks. Recent studies suggest that arousal may also affect performance by modulating sensory processes. Here, we augment a deep convolutional neural network (DCNN) with a global gain mechanism to mimic the effects of arousal on sensory processing. This allowed us to reproduce the Yerkes-Dodson effect in the model's performance. Investigating our network furthermore revealed that for easy tasks, early network features contained most task-relevant information during high global gain states, resulting in model performance on easy tasks being best at high global gain states. In contrast, later layers featured most information at medium global gain states and were essential for performance on challenging tasks. Our results therefore establish a novel account of the Yerkes-Dodson effect, where the interaction between arousal state and task difficulty directly results from an interaction between arousal states and hierarchical sensory processing.

2013 ◽  
Vol 23 (17) ◽  
pp. 1681-1684 ◽  
Author(s):  
Nikos Green ◽  
Rafal Bogacz ◽  
Julius Huebl ◽  
Ann-Kristin Beyer ◽  
Andrea A. Kühn ◽  
...  

2018 ◽  
Author(s):  
Nathan J. Evans ◽  
Guy Hawkins ◽  
Scott Brown

Theories of perceptual decision-making have been dominated by the idea that evidence accumulates in favor of different alternatives until some fixed threshold amount is reached, which triggers a decision. Recent theories have suggested that these thresholds may not be fixed during each decision, but change as time passes. These collapsing thresholds can improve performance in particular decision environments, but reviews of data from typical decision-making paradigms have failed to support collapsing thresholds. We designed three experiments to test collapsing threshold assumptions in decision environments specifically tailored to make them optimal. An emphasis on decision speed encouraged the adoption of collapsing thresholds – most strongly through the use of response deadlines, but also through instruction to a lesser extent – but setting an explicit goal of reward rate optimality through both instructions and task design did not. Our results provide a new explanation for previous findings regarding decision-making differences between humans and non-human primates.


2021 ◽  
Author(s):  
Maxine Tamara Sherman ◽  
Anil Seth

In daily life, repeated experiences with a task (e.g. driving) will generally result in the development of a belief about one’s ability (“I am a good driver”). Here we ask how such beliefs, termed self-efficacy, interact with metacognitive confidence judgements. Across three pre-registered experiments, participants performed a perceptual discrimination task and reported their decision confidence. We induced contextual beliefs about performance (our operationalisation of self-efficacy) by manipulating the prior probability of an easy or hard trial occurring in each block. In Experiment 1 easy and hard trials generated the same levels of performance (a “subjective difficulty” manipulation), whereas in Experiments 2 and 3 performance differed across difficulty conditions (an “objective difficulty” manipulation). Results showed that context (self-efficacy) and difficulty interacted multiplicatively, consistent with the notion that confidence judgements combine decision evidence with a prior (contextual) belief on being correct. This occurred despite context having no corresponding effect on performance. We reasoned that performing tasks in easy contexts may reduce cognitive “load”, and tested this, in Experiment 3, by instructing participants to perform two tasks concurrently. Consistent with a reduction in load, the effects of context transferred from influencing confidence on our primary task to improving performance on the secondary task. Taken together, these studies reveal that contextual beliefs about performance facilitate multitasking, potentially by reducing the load of tasks believed to be easy, and they extend psychophysical investigations of perceptual decision-making by incorporating ‘higher-order’ beliefs about difficulty context, corresponding to intuitive notions of self-efficacy.


2018 ◽  
Vol 9 (3) ◽  
pp. 204380871878742
Author(s):  
Estrella Serrano-Guerrero ◽  
Juan Francisco Rodríguez-Testal ◽  
Agustín Martín-Rodríguez ◽  
Miguel Ruiz-Veguilla

The aim was to determine whether there are differences between groups in jumping to conclusions and the number of beads required to make a decision based on task difficulty. An assessment was made of 19 patients with non-affective psychosis, 19 with obsessive–compulsive disorder (OCD), and 19 healthy controls. The Beads Task scale was used in its two versions. Patients with non-affective psychosis jumped to conclusions. There was significant interaction between group and task difficulty. Increased difficulty of the task did not affect the number of beads patients with non-affective psychosis or OCD needed to make their decision. However, healthy controls needed to see more beads before they could make a decision in the hard test than in the easy one. Patients with non-affective psychosis jump to conclusions, but neither this group nor the OCD patients benefit from the changes in task difficulty when making their decisions.


2018 ◽  
Vol 38 (24) ◽  
pp. 5632-5648 ◽  
Author(s):  
Nuttida Rungratsameetaweemana ◽  
Sirawaj Itthipuripat ◽  
Annalisa Salazar ◽  
John T. Serences

Author(s):  
Jacobo Fernandez-Vargas ◽  
Christoph Tremmel ◽  
Davide Valeriani ◽  
Saugat Bhattacharyya ◽  
Caterina Cinel ◽  
...  

2021 ◽  
Vol 118 (30) ◽  
pp. e2103952118
Author(s):  
Dmitry R. Lyamzin ◽  
Ryo Aoki ◽  
Mohammad Abdolrahmani ◽  
Andrea Benucci

During perceptual decision-making, the brain encodes the upcoming decision and the stimulus information in a mixed representation. Paradigms suitable for studying decision computations in isolation rely on stimulus comparisons, with choices depending on relative rather than absolute properties of the stimuli. The adoption of tasks requiring relative perceptual judgments in mice would be advantageous in view of the powerful tools available for the dissection of brain circuits. However, whether and how mice can perform a relative visual discrimination task has not yet been fully established. Here, we show that mice can solve a complex orientation discrimination task in which the choices are decoupled from the orientation of individual stimuli. Moreover, we demonstrate a typical discrimination acuity of 9°, challenging the common belief that mice are poor visual discriminators. We reached these conclusions by introducing a probabilistic choice model that explained behavioral strategies in 40 mice and demonstrated that the circularity of the stimulus space is an additional source of choice variability for trials with fixed difficulty. Furthermore, history biases in the model changed with task engagement, demonstrating behavioral sensitivity to the availability of cognitive resources. In conclusion, our results reveal that mice adopt a diverse set of strategies in a task that decouples decision-relevant information from stimulus-specific information, thus demonstrating their usefulness as an animal model for studying neural representations of relative categories in perceptual decision-making research.


2018 ◽  
Author(s):  
Mohsen Rakhshan ◽  
Vivian Lee ◽  
Emily Chu ◽  
Lauren Harris ◽  
Lillian Laiks ◽  
...  

AbstractPerceptual decision making is influenced by reward expected from alternative options or actions, but the underlying neural mechanisms are currently unknown. More specifically, it is debated whether reward effects are mediated through changes in sensory processing and/or later stages of decision making. To address this question, we conducted two experiments in which human subjects made saccades to what they perceived to be the first or second of two visually identical but asynchronously presented targets, while we manipulated expected reward from correct and incorrect responses on each trial. We found that unequal reward caused similar shifts in target selection (reward bias) between the two experiments. Moreover, observed reward biases were independent of the individual’s sensitivity to sensory signals. These findings suggest that the observed reward effects were determined heuristically via modulation of decision-making processes instead of sensory processing and thus, are more compatible with response bias rather than perceptual bias. To further explain our findings and uncover plausible neural mechanisms, we simulated our experiments with a cortical network model and tested alternative mechanisms for how reward could exert its influence. We found that our observations are more compatible with reward-dependent input to the output layer of the decision circuit. Together, our results suggest that during a temporal judgment task, the influence of reward information on perceptual choice is more compatible with changing later stages of decision making rather than early sensory processing.


2021 ◽  
Author(s):  
Ren Paterson ◽  
Yizhou Lyu ◽  
Yuan Chang Leong

AbstractPeople are biased towards seeing outcomes that they are motivated to see. For example, sports fans of opposing teams often perceive the same ambiguous foul in favor of the team they support. Here, we test the hypothesis that amygdala-dependent allocation of visual attention facilitates motivational biases in perceptual decision-making. Human participants were rewarded for correctly categorizing an ambiguous image into one of two categories while undergoing fMRI. On each trial, we used a financial bonus to motivate participants to see one category over another. The reward maximizing strategy was to perform the categorization task accurately, but participants were biased towards categorizing the images as the category we motivated them to see. Heightened amygdala activity preceded motivation consistent categorizations, and participants with higher amygdala activation exhibited stronger motivational biases in their perceptual reports. Trial-by-trial amygdala activity was associated with stronger enhancement of neural activity encoding desirable percepts in sensory cortices, suggesting that amygdala-dependent effects on perceptual decisions arose from biased sensory processing. Analyses using a drift diffusion model provide converging evidence that trial-by-trial amygdala activity was associated with stronger motivational biases in the accumulation of sensory evidence. Prior work examining biases in perceptual decision-making have focused on the role of frontoparietal regions. Our work highlights an important contribution of the amygdala. When people are motivated to see one outcome over another, the amygdala biases perceptual decisions towards those outcomes.Significance StatementForming accurate perceptions of the environment is essential for adaptive behavior. People however are biased towards seeing what they want to see, giving rise to inaccurate perceptions and erroneous decisions. Here, we combined behavior, modeling, and fMRI to show that the bias towards seeing desirable percepts is related to trial-by-trial fluctuations in amygdala activity. In particular, during moments with higher amygdala activity, sensory processing is biased in favor of desirable percepts, such that participants are more likely to see what they want to see. These findings highlight the role of the amygdala in biasing visual perception, and shed light on the neural mechanisms underlying the influence of motivation and reward on how people decide what they see.


Author(s):  
Claudine Habak ◽  
Mohamed L. Seghier ◽  
Julie Brûlé ◽  
Mohamed A. Fahim ◽  
Oury Monchi

Sign in / Sign up

Export Citation Format

Share Document