scholarly journals Rhizobiales commensal bacteria promote Arabidopsis thaliana root growth via host sulfated peptide pathway

2021 ◽  
Author(s):  
Jana Hucklenbroich ◽  
Tamara Gigolashvili ◽  
Anna Koprivova ◽  
Philipp Spohr ◽  
Mahnaz Nezamivand Chegini ◽  
...  

Root-associated commensal bacteria that belong to the order Rhizobiales, which also contains symbiotic and pathogenic bacteria, promote primary root growth of Arabidopsis thaliana. Yet, its underlying molecular mechanism and physiological impact remained unclear. Here, we conducted a transcriptomic analysis of A. thaliana roots inoculated with root-associated commensal bacteria of Rhizobiales and sister lineages and revealed common and strain/lineage-specific transcriptional responsea, possibly mediated by WRKY and ANAC family of transcription factors. We revealed that the observed common response was also partially triggered by a wide range of non-pathogenic bacteria, fungi, and a multi-kingdom synthetic community (SynCom). This response was characterized by a down-regulation of genes related to intracellular redox regulation, suggesting distinctive redox status between pathogenic and non-pathogenic interactions. By integrating this analysis with developmental and cell biological analyses, we identified a crucial role for the sulfated peptide pathway mediated by TYROSYLPROTEIN SULFOTRANSFERASE (TPST) in Rhizobiales root growth promotion (RGP) activity. Conversely, none of the known sulfated peptide pathway appeared to be required for this activity, suggesting a novel sulfated protein pathway targeted by Rhizobiales RGP. Finally, we show that TPST is needed for RGP exerted by Rhizobiales but not Pseudomonadales isolates, delineating lineage-specific mechanisms to manipulate host root development.

2007 ◽  
Vol 20 (2) ◽  
pp. 207-217 ◽  
Author(s):  
José López-Bucio ◽  
Juan Carlos Campos-Cuevas ◽  
Erasto Hernández-Calderón ◽  
Crisanto Velásquez-Becerra ◽  
Rodolfo Farías-Rodríguez ◽  
...  

Soil microorganisms are critical players in plant-soil interactions at the rhizosphere. We have identified a Bacillus megaterium strain that promoted growth and development of bean (Phaseolus vulgaris) and Arabidopsis thaliana plants. We used Arabidopsis thaliana as a model to characterize the effects of inoculation with B. megaterium on plant-growth promotion and postembryonic root development. B. megaterium inoculation caused an inhibition in primary-root growth followed by an increase in lateral-root number, lateral-root growth, and root-hair length. Detailed cellular analyses revealed that primary root-growth inhibition was caused both by a reduction in cell elongation and by reduction of cell proliferation in the root meristem. To study the contribution of auxin and ethylene signaling pathways in the alterations in root-system architecture elicited by B. megaterium, a suite of plant hormone mutants of Arabidopsis, including aux1-7, axr4-1, eir1, etr1, ein2, and rhd6, defective in either auxin or ethylene signaling, were evaluated for their responses to inoculation with this bacteria. When inoculated, all mutant lines tested showed increased biomass production. Moreover, aux1-7 and eir1, which sustain limited root-hair and lateral-root formation when grown in uninoculated medium, were found to increase the number of lateral roots and to develop long root hairs when inoculated with B. megaterium. The ethylene-signaling mutants etr1 and ein2 showed an induction in lateral-root formation and root-hair growth in response to bacterial inoculation. Taken together, our results suggest that plant-growth promotion and root-architectural alterations by B. megaterium may involve auxin- and-ethylene independent mechanisms.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Luciano M. Di Fino ◽  
Ignacio Cerrudo ◽  
Sonia R. Salvatore ◽  
Francisco J. Schopfer ◽  
Carlos García-Mata ◽  
...  

2019 ◽  
Vol 61 (2) ◽  
pp. 342-352 ◽  
Author(s):  
Pamela A Naulin ◽  
Grace I Armijo ◽  
Andrea S Vega ◽  
Karem P Tamayo ◽  
Diana E Gras ◽  
...  

Abstract Nitrate can act as a potent signal to control growth and development in plants. In this study, we show that nitrate is able to stimulate primary root growth via increased meristem activity and cytokinin signaling. Cytokinin perception and biosynthesis mutants displayed shorter roots as compared with wild-type plants when grown with nitrate as the only nitrogen source. Histological analysis of the root tip revealed decreased cell division and elongation in the cytokinin receptor double mutant ahk2/ahk4 as compared with wild-type plants under a sufficient nitrate regime. Interestingly, a nitrate-dependent root growth arrest was observed between days 5 and 6 after sowing. Wild-type plants were able to recover from this growth arrest, while cytokinin signaling or biosynthesis mutants were not. Transcriptome analysis revealed significant changes in gene expression after, but not before, this transition in contrasting genotypes and nitrate regimes. We identified genes involved in both cell division and elongation as potentially important for primary root growth in response to nitrate. Our results provide evidence linking nitrate and cytokinin signaling for the control of primary root growth in Arabidopsis thaliana.


2019 ◽  
Vol 85 (19) ◽  
Author(s):  
Evan Mayer ◽  
Patricia Dörr de Quadros ◽  
Roberta Fulthorpe

ABSTRACT A collection of bacterial endophytes isolated from stem tissues of plants growing in soils highly contaminated with petroleum hydrocarbons were screened for plant growth-promoting capabilities. Twenty-seven endophytic isolates significantly improved the growth of Arabidopsis thaliana plants in comparison to that of uninoculated control plants. The five most beneficial isolates, one strain each of Curtobacterium herbarum, Paenibacillus taichungensis, and Rhizobium selenitireducens and two strains of Plantibacter flavus were further examined for growth promotion in Arabidopsis, lettuce, basil, and bok choy plants. Host-specific plant growth promotion was observed when plants were inoculated with the five bacterial strains. P. flavus strain M251 increased the total biomass and total root length of Arabidopsis plants by 4.7 and 5.8 times, respectively, over that of control plants and improved lettuce and basil root growth, while P. flavus strain M259 promoted Arabidopsis shoot and root growth, lettuce and basil root growth, and bok choy shoot growth. A genome comparison between P. flavus strains M251 and M259 showed that both genomes contain up to 70 actinobacterial putative plant-associated genes and genes involved in known plant-beneficial pathways, such as those for auxin and cytokinin biosynthesis and 1-aminocyclopropane-1-carboxylate deaminase production. This study provides evidence of direct plant growth promotion by Plantibacter flavus. IMPORTANCE The discovery of new plant growth-promoting bacteria is necessary for the continued development of biofertilizers, which are environmentally friendly and cost-efficient alternatives to conventional chemical fertilizers. Biofertilizer effects on plant growth can be inconsistent due to the complexity of plant-microbe interactions, as the same bacteria can be beneficial to the growth of some plant species and neutral or detrimental to others. We examined a set of bacterial endophytes isolated from plants growing in a unique petroleum-contaminated environment to discover plant growth-promoting bacteria. We show that strains of Plantibacter flavus exhibit strain-specific plant growth-promoting effects on four different plant species.


2018 ◽  
Vol 41 (6) ◽  
pp. 1453-1467 ◽  
Author(s):  
Abdul Wakeel ◽  
Imran Ali ◽  
Sakila Upreti ◽  
Azizullah Azizullah ◽  
Bohan Liu ◽  
...  

Planta ◽  
2007 ◽  
Vol 226 (1) ◽  
pp. 21-34 ◽  
Author(s):  
Sadaf Khan ◽  
Julie M. Stone

2006 ◽  
Vol 291 (1) ◽  
pp. G1-G7 ◽  
Author(s):  
Derick Han ◽  
Naoko Hanawa ◽  
Behnam Saberi ◽  
Neil Kaplowitz

GSH is the most abundant redox molecule in cells and thus the most important determinant of cellular redox status. Thiols in proteins can undergo a wide range of reversible redox modifications (e.g., S-glutathionylation, S-nitrosylation, and disulfide formation) during times of increased exposure to reactive oxygen and nitrogen species, which can affect protein activity. These reversible thiol modifications regulated by GSH may be nanoswitches to turn on and off proteins, similar to phosphorylation, in cells. In the cytoplasm, an altered redox state can activate (e.g., MAPKs and NF-E2-related factor-2) and inhibit (e.g., phosphatases and caspases) proteins, whereas in the nucleus, redox alterations can inhibit DNA binding of transcription factors (e.g., NF-κB and activator protein-1). The consequences include the promotion of expression of antioxidant genes and alterations of hepatocyte survival as well as the balance between necrotic versus apoptotic cell death. Therefore, the understanding of the redox regulation of proteins may have important clinical ramifications in understanding the pathogenesis of liver diseases.


2020 ◽  
Vol 103 (4-5) ◽  
pp. 511-525
Author(s):  
Yingli Zhong ◽  
Jiyong Xie ◽  
Suzhen Wen ◽  
Wenwu Wu ◽  
Li Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document