scholarly journals Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat

2021 ◽  
Author(s):  
Andrew Stout ◽  
Addison Mirliani ◽  
John Yuen ◽  
Eugene White ◽  
David L. Kaplan

Cell-cultured meat offers the potential for a more sustainable, ethical, resilient, and healthy food system. However, research and development has been hindered by the lack of suitable serum-free media that enable the robust expansion of relevant cells (e.g., muscle satellite cells) over multiple passages. Recently, a low-cost serum-free media (B8) was described for induced pluripotent stem cells. Here, we adapt this media for bovine satellite cells and show that the addition of a single component, recombinant albumin, renders B8 suitable for the long-term expansion of cells without sacrificing myogenicity. We show that this new media (Beefy-9) maintains robust cell growth over the entire culture period tested (seven passages) with an average growth rate of 39 hours per population doubling). Along with demonstrated efficacy for bovine cells, this work provides a promising starting-point for developing serum-free media for cultures from other meat-relevant species. Ultimately, this work offers a promising foundation for escaping the reliance on serum in cultured meat research, thereby accelerating the field.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samatha Bhat ◽  
Pachaiyappan Viswanathan ◽  
Shashank Chandanala ◽  
S. Jyothi Prasanna ◽  
Raviraja N. Seetharam

AbstractBone marrow-derived mesenchymal stromal cells (BM-MSCs) are gaining increasing importance in the field of regenerative medicine. Although therapeutic value of MSCs is now being established through many clinical trials, issues have been raised regarding their expansion as per regulatory guidelines. Fetal bovine serum usage in cell therapy poses difficulties due to its less-defined, highly variable composition and safety issues. Hence, there is a need for transition from serum-based to serum-free media (SFM). Since SFM are cell type-specific, a precise analysis of the properties of MSCs cultured in SFM is required to determine the most suitable one. Six different commercially available low serum/SFM with two different seeding densities were evaluated to explore their ability to support the growth and expansion of BM-MSCs and assess the characteristics of BM-MSCs cultured in these media. Except for one of the SFM, all other media tested supported the growth of BM-MSCs at a low seeding density. No significant differences were observed in the expression of MSC specific markers among the various media tested. In contrary, the population doubling time, cell yield, potency, colony-forming ability, differentiation potential, and immunosuppressive properties of MSCs varied with one another. We show that SFM tested supports the growth and expansion of BM-MSCs even at low seeding density and may serve as possible replacement for animal-derived serum.


2022 ◽  
Author(s):  
Joo Youn Lee ◽  
Min Hee Kang ◽  
Ji Eun Jang ◽  
Jeong Eon Lee ◽  
Yuyeong Yang ◽  
...  

Abstract Stem cells are attractive candidates for the regeneration of tissue and organ. Mesenchymal stem cells (MSCs) have been extensively investigated for their potential applications in regenerative medicine and cell therapy. For developing effective stem cell therapy, the mass production of consistent quality cells is required. The cell culture medium is the most critical aspect of the mass production of qualified stem cells. Classically, fetal bovine serum (FBS) has been used as a culture supplement for MSCs. Due to the undefined and heterologous composition of animal origin components in FBS, efforts to replace animal-derived components with non-animal-derived substances led to safe serum free media (SFM). Adipose derived mesenchymal stem cells (ADSCs) cultivated in SFM provided a more stable population doubling time (PDT) to later passage and more cells in a shorter time compared to FBS containing media. ADSCs cultivated in SFM had lower cellular senescence, lower immunogenicity, and higher genetic stability than ADSCs cultivated in FBS containing media. Differential expression analysis of mRNAs and proteins showed that the expression of genes related with apoptosis, immune response, and inflammatory response were significantly up-regulated in ADSCs cultivated in FBS containing media. ADSCs cultivated in SFM showed similar therapeutic efficacy in an acute pancreatitis mouse model to ADSCs cultivated in FBS containing media. Consideration of clinical trials, not only pre-clinical trial, suggests that cultivation of MSCs using SFM might offer more safe cell therapeutics as well as repeated administration due to low immunogenicity.


2021 ◽  
Vol 22 (16) ◽  
pp. 8376
Author(s):  
Stig Skrivergaard ◽  
Martin Krøyer Rasmussen ◽  
Margrethe Therkildsen ◽  
Jette Feveile Young

Cultured meat is an emerging alternative food technology which aims to deliver a more ethical, sustainable, and healthy muscle-tissue-derived food item compared to conventional meat. As start-up companies are rapidly forming and accelerating this technology, many aspects of this multi-faceted science have still not been investigated in academia. In this study, we investigated if bovine satellite cells with the ability to proliferate and undergo myogenic differentiation could be isolated after extended tissue storage, for the purpose of increasing the practicality for cultured meat production. Proliferation of bovine satellite cells isolated on the day of arrival or after 2 and 5 days of tissue storage were analyzed by metabolic and DNA-based assays, while their myogenic characteristics were investigated using RT-qPCR and immunofluorescence. Extended tissue storage up to 5 days did not negatively affect proliferation nor the ability to undergo fusion and create myosin heavy chain-positive myotubes. The expression patterns of myogenic and muscle-specific genes were also not affected after tissue storage. In fact, the data indicated a positive trend in terms of myogenic potential after tissue storage, although it was non-significant. These results suggest that the timeframe of which viable myogenic satellite cells can be isolated and used for cultured meat production can be greatly extended by proper tissue storage.


1991 ◽  
Vol 82 (8) ◽  
pp. 883-885 ◽  
Author(s):  
Masanori Terashima ◽  
Kenichiro Ikeda ◽  
Chihaya Maesawa ◽  
Hidenobu Kawamura ◽  
Yorikazu Niitsu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document