scholarly journals Performance evaluation of virus concentration methods for implementing SARS-CoV-2 Wastewater-based epidemiology emphasizing quick data turnaround.

Author(s):  
Md Ariful Islam Juel ◽  
Nicholas Stark ◽  
Bridgette Nicolosi ◽  
Jordan Lontai ◽  
Kevin Lambirth ◽  
...  

Wastewater based epidemiology (WBE) has drawn significant attention as an early warning tool to detect and predict the trajectory of COVID-19 cases in a community, in conjunction with public health data. This means of monitoring for outbreaks has been used at municipal wastewater treatment centers to analyze COVID-19 trends in entire communities, as well as by universities and other community living environments to monitor COVID-19 spread in buildings. Sample concentration is crucial, especially when viral abundance in raw wastewater is below the threshold of detection by RT-qPCR analysis. We evaluated the performance of a rapid ultrafiltration-based virus concentration method using InnovaPrep Cp Select pipette tips and compared this to the established electronegative membrane filtration (EMF) method. We evaluated the sensitivity of SARS-CoV-2 quantification, surrogate virus recovery rate, and sample processing time. Results suggest that the Cp Select concentrator is more efficient at concentrating SARS-CoV-2 from wastewater compared to the EMF method. 30% of samples that tested negative when concentrated with the EMF method produced a positive signal with the Cp Select protocol. Increased recovery of the surrogate virus control using the Cp Select confirms this observation. We optimized the Cp Select protocol by adding AVL lysis buffer and sonication, to increase the recovery of virus. Sonication increased BCoV recovery by 19%, which seems to compensate for viral loss during centrifugation. Filtration time decreases by approximately 30% when using the Cp Select protocol, making this an optimal choice for building surveillance applications where a quick turnaround time is necessary.

2018 ◽  
Vol 45 ◽  
pp. 00054 ◽  
Author(s):  
Bozena Mrowiec

The aim of this paper was to review the literature data regarding the physico-chemical characteristic of plastic pollutants discharged with municipal sewage, the practical possibility of removing microplastic particles from wastewater during different treatment steps in WWTPs and the problem of surface water contamination within them. Microplastics (the size range of 1 nm to < 5 mm), have been recognized as an emerging threat, as well as an ecotoxicological and ecological risk for water ecosystems. Municipal wastewater treatment plants (WWTPs) are mentioned as the main point sources of microplastics in an aquatic environment. Microplastic particles can be effectively removed in the primary treatment zones via solids skimming and sludge settling processes. Different tertiary treatment processes such as: gravity sand filtration, discfilter, air flotation and membrane filtration provide substantial additional removal of microplastics, and the efficiency of wastewater treatment process can be at a removal level of 99.9%. Nevertheless, given the large volumes of effluent constantly discharged to receivers, even tertiary level WWTPs may constitute a considerable source of microplastics in the surface water.


2019 ◽  
Vol 41 (1) ◽  
pp. 47-54
Author(s):  
Magdalena Domańska ◽  
Anna Boral ◽  
Kamila Hamal ◽  
Magdalena Kuśnierz ◽  
Janusz Łomotowski ◽  
...  

AbstractThe increasingly stringent requirements for wastewater treatment enforce the adoption of technologies that reduce pollution and minimize waste production. By combining the typical activated sludge process with membrane filtration, biological membrane reactors (MBR) offer great technological potential in this respect. The paper presents the principles and effectiveness of using an MBR at the Głogów Małopolski operation. Physicochemical tests of raw and treated wastewater as well as microscopic analyses with the use of the FISH (fluorescence in situ hybridization) method were carried out. Moreover, the level of electric energy consumption during the operation of the wastewater treatment plant and problems related to fouling were also discussed. A wastewater quality analysis confirmed the high efficiency of removing organic impurities (on average 96% in case of BOD5 and 94% in case of COD) and suspension (on average 93%).


2013 ◽  
Vol 69 (5) ◽  
pp. 1021-1027 ◽  
Author(s):  
W. Yang ◽  
W. Syed ◽  
H. Zhou

This study compared the performance between membrane-coupled moving bed biofilm reactor (M-MBBR) and a conventional membrane bioreactor (MBR) in parallel. Extensive tests were conducted in three pilot-scale experimental units over 6 months. Emphasis was placed on the factors that would affect the performance of membrane filtration. The results showed that the concentrations of soluble microbial product (SMP), colloidal total organic carbon and transparent exopolymer particles in the M-MBBR systems were not significantly different from those in the control MBR system. However, the fouling rates were much higher in the M-MBBR systems as compared to the conventional MBR systems. This indicates membrane fouling potential was related not only to the concentration of SMP, but also to their sources and characteristics. The addition of polyaluminum chloride could reduce the fouling rate of the moving bed biofilm reactor unit by 56.4–84.5% at various membrane fluxes.


2014 ◽  
Vol 70 (6) ◽  
pp. 1115-1121 ◽  
Author(s):  
Emma Haun ◽  
Katharina Ulbricht ◽  
Regina Nogueira ◽  
Karl-Heinz Rosenwinkel

A virus tool based on Activated Sludge Model No. 3 for modeling virus elimination in activated sludge systems was developed and calibrated with the results from laboratory-scale batch tests and from measurements in a municipal wastewater treatment plant (WWTP). The somatic coliphages were used as an indicator for human pathogenic enteric viruses. The extended model was used to simulate the virus concentration in batch tests and in a municipal full-scale WWTP under steady-state and dynamic conditions. The experimental and modeling results suggest that both adsorption and inactivation processes, modeled as reversible first-order reactions, contribute to virus elimination in activated sludge systems. The model should be a useful tool to estimate the number of viruses entering water bodies from the discharge of treated effluents.


2019 ◽  
Vol 86 ◽  
pp. 00020
Author(s):  
Zbigniew Mucha ◽  
Włodzimierz Wójcik ◽  
Michał Polus

In recent years, anaerobic membrane bioreactor (AnMBR) technology has been considered as a very appealing alternative for wastewater treatment due to its significant advantages over conventional anaerobic treatment and aerobic membrane bioreactor (MBR) technology. The paper provides an overview of the current status of the anaerobic membrane bioreactor technology with a special emphasis on its performance and drawbacks when applied for domestic and municipal wastewater treatment. According to the reported data, the renewable energy produced at the plants (i.e. from methane) covered the energy demand for membrane filtration while the excess energy can be further utilized. Anaerobic membrane bioreactors are an attractive technology that needs further research efforts and applications at an industrial scale.


2009 ◽  
Vol 60 (1) ◽  
pp. 251-259 ◽  
Author(s):  
C. Kazner ◽  
J. Meier ◽  
T. Wintgens ◽  
T. Melin

Direct capillary nanofiltration was tested for reclamation of tertiary effluent from a municipal wastewater treatment plant. This process can be regarded as a promising treatment alternative for high quality water reuse applications when combined with powdered activated carbon for enhanced removal of organic compounds. The nanofiltration was operated at flux levels between 20 and 25 L/(m2 h) at a transmembrane pressure difference of 2–3 bar for approximately 4,000 operating hours. The study was conducted with PAC doses in the range from 0 to 50 mg/L. The plant removal for DOC ranged from 88–98%. The sulfate retention of the membrane filtration process was between 87 and 96%. The process provided a consistently high permeate quality with respect to organic and inorganic key parameters.


2008 ◽  
Vol 62 (5) ◽  
Author(s):  
Lucia Dančová ◽  
Igor Bodík ◽  
Andrea Blšťáková ◽  
Zuzana Jakubčová ◽  
Miloslav Drtil

AbstractPossibilities of membrane technology and the use of membrane processes in wastewater treatment were investigated. The main focus was the monitoring of the starting phase of a domestic wastewater treatment plant. Experimental part of the study was realized at the municipal wastewater treatment plant (WWTP) Devínska Nová Ves — Bratislava during the period from February 2005 to September 2006. The system was stable without any external chemical treatment of the membrane modules and the permeate quality was very high. Observed decrease of COD and BOD5 values ranged between 91 % and 98 %. The process of nitrification was very successful considering its high efficiency (> 95 %).


2012 ◽  
Vol 40 (5) ◽  
pp. 479-486 ◽  
Author(s):  
Marek Holba ◽  
Karel Plotěný ◽  
Lukáš Dvořák ◽  
Marcel Gómez ◽  
Iveta Růžičková

2021 ◽  
Author(s):  
Adele LAZUKA ◽  
Charlotte Arnal ◽  
Emmanuel Soyeux ◽  
Mickael Sampson ◽  
Anne-Sophie Lepeuple ◽  
...  

SARS-CoV-2 wastewater-based epidemiology (WBE) has been advanced as a relevant indicator of distribution of COVID-19 in communities, supporting classical testing and tracing epidemiological approaches. An extensive sampling campaign, including ten municipal wastewater treatment plants, has been conducted in different cities of France over a 20-weeks period, encompassing the second peak of COVID-19 outbreak in France. A well-recognised ultrafiltration - RNA extraction - RT-qPCR protocol was used and qualified, showing 5.5 +/- 0.5% recovery yield on heat-inactivated SARS-CoV-2. Importantly the whole, solid and liquid, fraction of wastewater was used for virus concentration in this study. Campaign results showed medium- to strong- correlation between SARS-CoV-2 WBE data and COVID-19 prevalence. To go further, WWTP inlet flow rate and raining statistical relationships were studied and taken into account for each WWTP in order to calculate contextualized SARS-CoV-2 loads. This metric presented improved correlation strengths with COVID-19 prevalence for WWTP particularly submitted and sensitive to rain. Such findings highlighted that SARS-CoV-2 WBE data ultimately require to be contextualised for relevant interpretation.


Author(s):  
Bilge Alpaslan Kocamemi ◽  
Halil Kurt ◽  
Ahmet Sait ◽  
Fahriye Sarac ◽  
Ahmet Mete Saatci ◽  
...  

Following the announcement of SARS-CoV-2 worldwide pandemic spread by WHO on March 11, 2020, wastewater based epidemiology received great attention in several countries: The Netherlands [Medama et al., 2020; K-Lodder et al., 2020], USA [Wu et al., 2020; Memudryi et al., 2020], Australia [Ahmed et al., 2020], France [Wurtzer et al., 2020], China [Wang et al., 2020], Spain [Randazzo et al., 2020; Walter et al., 2020], Italy (La Rosa et al., 2020; Rimoldi et al., 2020) and Israel [Or et al., 2020], performed analysis in wastewaters by using different virus concentration techniques. Turkey took its place among these countries on 7th of May, 2020 by reporting SARS-CoV-2 RT-qPCR levels at the inlet of seven (7) major municipal wastewater treatment plants (WWTPs) of Istanbul [Alpaslan Kocamemi et al., 2020], which is a metropole with 15.5 million inhabitants and a very high population density (2987 persons/km2) and having about 65 % of Covid-19 cases in Turkey. Sludges that are produced in WWTPs should be expected to contain SARS-CoV-2 virus as well. There has not yet been any study for the fate of SAR-CoV-2 in sludges generated from WWTPs. Knowledge about the existing of SARS-CoV-2 in sludge may be useful for handling the sludge during its dewatering, stabilizing and disposal processes. This information will also be valuable in case of sludges that are used as soil conditioners in agriculture or sent to landfill disposal. In wastewater treatment plants, generally two different types of sludges are generated; primary sludge (PS) and waste activated sludge (WAS). PS forms during the settling of wastewater by gravity in the primary settling tanks. Little decomposition occurs during primary sludge formation. Since most of the inorganic part of the wastewater is removed in the earlier grit removal process, the PS consists of mainly organic material that settles. The PS is about 1-2 % solids by weight. In the biological treatment part of the WWTPs, the biomass that forms in the anaerobic, anoxic and oxic zones of the process is settled in final clarifiers by gravity and returned to the beginning of the biological process so that it is not washed off. The waste activated sludge (WAS) is the excess part of the biomass that grows in this secondary treatment process. It has to be removed from the process not to increase the mixed liquor suspended solids concentration (bacteria concentration) in the secondary process more than a fixed value. The WAS is about 0.6 - 0.9 % solids by weight. This work aims to find whether SARS-CoV-19 is present in the PS and WAS before it is dewatered and sent to anaerobic or aerobic digester processes or to thermal drying operations. For this purpose, on the 7th of May 2020, two (2) PS samples were collected from Ambarlı and Tuzla WWTPs, seven (7) WAS samples were collected from Terkos, Ambarlı, Atakoy I & II, Pasakoy II, Buyukcekmece and Tuzla I WWTPs. Polyethylene glycol 8000 (PEG 8000) adsorption [Wu et al., 2020] SARS-Cov-2 concentration method was used for SARS-CoV-2 concentration after optimization. [Alpaslan Kocamemi et al., 2020]. Real time RT-PCR diagnostic panel validated by US was used to quantify SARS-CoV-2 RNA in primary and waste activated sludge samples taken from WWTPs in Istanbul. All samples were tested positive. Titers of SARS-CoV-2 have been detected ranging copies between 1.17E4 to 4.02x104 per liter.


Sign in / Sign up

Export Citation Format

Share Document