scholarly journals Characterization of the interaction domains between the phosphoprotein and the nucleocapsid of human Metapneumovirus

2021 ◽  
Author(s):  
Hortense Decool ◽  
Benjamin Bardiaux ◽  
Luis Checa Ruano ◽  
Olivier Sperandio ◽  
Jenna Fix ◽  
...  

Human metapneumovirus (HMPV) causes severe respiratory diseases in young children. The HMPV RNA genome is encapsidated by the viral nucleoprotein, forming an RNA-N complex (NNuc), which serves as template for genome replication and mRNA transcription by the RNA-dependent RNA polymerase (RdRp). The RdRp is formed by the association of the large polymerase subunit (L), which has RNA polymerase, capping and methyltransferase activities, and the tetrameric phosphoprotein (P). P plays a central role in the RdRp complex by binding to NNuc and L, allowing the attachment of the L polymerase to the nucleocapsid template. During infection these proteins concentrate in cytoplasmic inclusion bodies (IBs) where viral RNA synthesis occurs. By analogy to the closely related pneumovirus respiratory syncytial virus (RSV), it is likely that the formation of IBs depends on the interaction between P and NNuc. However, the HMPV P-NNuc interaction still remains to characterize. Here, we finely characterized the binding domains involved in HMPV P and NNuc interaction by studying binding between recombinant proteins, combined with the use of a functional assay of the polymerase complex activity and the study of the recruitment of these proteins to IBs by immunofluorescence. We show that the last 6 C-terminal residues of HMPV P are necessary and sufficient for binding to NNuc, that P binds the N-terminal domain of N (NNTD), and identified conserved N residues critical for the interaction. Our results allowed to propose a structural model of the HMPV P-NNuc interaction.

2021 ◽  
Author(s):  
Hortense Decool ◽  
Benjamin Bardiaux ◽  
Luis Checa Ruano ◽  
Olivier Sperandio ◽  
Jenna Fix ◽  
...  

Human metapneumovirus (HMPV) causes severe respiratory diseases in young children. The HMPV RNA genome is encapsidated by the viral nucleoprotein (N), forming an RNA-N complex (N Nuc ), which serves as template for genome replication and mRNA transcription by the RNA-dependent RNA polymerase (RdRp). The RdRp is formed by the association of the large polymerase subunit (L), which has RNA polymerase, capping and methyltransferase activities, and the tetrameric phosphoprotein (P). P plays a central role in the RdRp complex by binding to N Nuc and L, allowing the attachment of the L polymerase to the N Nuc template. During infection these proteins concentrate in cytoplasmic inclusion bodies (IBs) where viral RNA synthesis occurs. By analogy to the closely related pneumovirus respiratory syncytial virus (RSV), it is likely that the formation of IBs depends on the interaction between HMPV P and N Nuc , which has not been demonstrated yet. Here, we finely characterized the binding P- N Nuc interaction domains by using recombinant proteins, combined with a functional assay for the polymerase complex activity, and the study of the recruitment of these proteins to IBs by immunofluorescence. We show that the last 6 C-terminal residues of HMPV P are necessary and sufficient for binding to N Nuc , that P binds to the N-terminal domain of N (N NTD ), and identified conserved N residues critical for the interaction. Our results allowed to propose a structural model for the HMPV P-N Nuc interaction. IMPORTANCE Human metapneumovirus (HMPV) is a leading cause of severe respiratory infections in children but also affects human populations of all ages worldwide. Nowadays, no vaccine or efficient antiviral treatments are available for this pneumovirus. A better understanding of the molecular mechanisms involved in viral replication could help the design or discovery of specific antiviral compounds. In this work we have investigated the interaction between two major viral proteins involved in HMPV RNA synthesis, the N and P proteins. We finely characterized their domains of interaction, and identified a pocket on the surface of the N protein, a potential target of choice for the design of compounds interfering with N-P complexes and inhibiting viral replication.


2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Vincent Rincheval ◽  
Mickael Lelek ◽  
Elyanne Gault ◽  
Camille Bouillier ◽  
Delphine Sitterlin ◽  
...  

mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Marie Galloux ◽  
Jennifer Risso-Ballester ◽  
Charles-Adrien Richard ◽  
Jenna Fix ◽  
Marie-Anne Rameix-Welti ◽  
...  

ABSTRACT Infection of host cells by the respiratory syncytial virus (RSV) is characterized by the formation of spherical cytoplasmic inclusion bodies (IBs). These structures, which concentrate all the proteins of the polymerase complex as well as some cellular proteins, were initially considered aggresomes formed by viral dead-end products. However, recent studies revealed that IBs are viral factories where viral RNA synthesis, i.e., replication and transcription, occurs. The analysis of IBs by electron microscopy revealed that they are membrane-less structures, and accumulated data on their structure, organization, and kinetics of formation revealed that IBs share the characteristics of cellular organelles, such as P-bodies or stress granules, suggesting that their morphogenesis depends on a liquid-liquid phase separation mechanism. It was previously shown that expression of the RSV nucleoprotein N and phosphoprotein P of the polymerase complex is sufficient to induce the formation of pseudo-IBs. Here, using a series of truncated P proteins, we identified the domains of P required for IB formation and show that the oligomeric state of N, provided it can interact with RNA, is critical for their morphogenesis. We also show that pseudo-IBs can form in vitro when recombinant N and P proteins are mixed. Finally, using fluorescence recovery after photobleaching approaches, we reveal that in cellula and in vitro IBs are liquid organelles. Our results strongly support the liquid-liquid phase separation nature of IBs and pave the way for further characterization of their dynamics. IMPORTANCE Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract illness in infants, elderly, and immunocompromised people. No vaccine or efficient antiviral treatment is available against this virus. The replication and transcription steps of the viral genome are appealing mechanisms to target for the development of new antiviral strategies. These activities take place within cytoplasmic inclusion bodies (IBs) that assemble during infection. Although expression of both the viral nucleoprotein (N) and phosphoprotein (P) allows induction of the formation of these IBs, the mechanism sustaining their assembly remains poorly characterized. Here, we identified key elements of N and P required for the scaffolding of IBs and managed for the first time to reconstitute RSV pseudo-IBs in vitro by coincubating recombinant N and P proteins. Our results provide strong evidence that the biogenesis of RSV IBs occurs through liquid-liquid phase transition mediated by N-P interactions.


2014 ◽  
Vol 57 (24) ◽  
pp. 10314-10328 ◽  
Author(s):  
Daljit S. Matharu ◽  
Daniel P. Flaherty ◽  
Denise S. Simpson ◽  
Chad E. Schroeder ◽  
Donghoon Chung ◽  
...  

2006 ◽  
Vol 42 (4) ◽  
pp. 174-178 ◽  
Author(s):  
Brenda M Morrow ◽  
Mark Hatherill ◽  
Heidi EM Smuts ◽  
Jane Yeats ◽  
Richard Pitcher ◽  
...  

2009 ◽  
Vol 29 (1) ◽  
pp. 35-40 ◽  
Author(s):  
N. Al-Sonboli ◽  
N. Al-Aghbari ◽  
A. Al-Aryani ◽  
Z. Atef ◽  
B. Brabin ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Ma. Del Rocío Baños-Lara ◽  
Boyang Piao ◽  
Antonieta Guerrero-Plata

Mucins (MUC) constitute an important component of the inflammatory and innate immune response. However, the expression of these molecules by respiratory viral infections is still largely unknown. Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) are two close-related paramyxoviruses that can cause severe low respiratory tract disease in infants and young children worldwide. Currently, there is not vaccine available for neither virus. In this work, we explored the differential expression of MUC by RSV and hMPV in human epithelial cells. Our data indicate that the MUC expression by RSV and hMPV differs significantly, as we observed a stronger induction of MUC8, MUC15, MUC20, MUC21, and MUC22 by RSV infection while the expression of MUC1, MUC2, and MUC5B was dominated by the infection with hMPV. These results may contribute to the different immune response induced by these two respiratory viruses.


2006 ◽  
Vol 34 (3) ◽  
pp. 320-329 ◽  
Author(s):  
Antonieta Guerrero-Plata ◽  
Antonella Casola ◽  
Giovanni Suarez ◽  
Xiang Yu ◽  
LeAnne Spetch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document