scholarly journals Mental practice modulates functional connectivity between the cerebellum and the primary motor cortex.

2021 ◽  
Author(s):  
Dylan Rannaud Monany ◽  
Florent Lebon ◽  
William Dupont ◽  
Charalambos Papaxanthis

Our brain has the extraordinary capacity to improve motor skills through mental practice. Conceptually, this ability is attributed to internal forward models, which are neural networks that can predict the sensory consequences of motor commands. While the cerebellum is considered as a potential locus of internal forward models, evidence for its involvement in mental practice is missing. In our study, we employed single and dual transcranial magnetic stimulation technique to probe the level of corticospinal excitability and of cerebellar-brain inhibition, respectively, before and after a mental practice session or a control session. Motor skills (i.e., accuracy and speed) were measured using a sequential finger tapping-task. Here, we show that mental practice enhances both speed and accuracy. In parallel, the functional connectivity between the cerebellum and the primary motor cortex changes, with less inhibition from the first to the second, expressing the existence of neuroplastic changes within the cerebellum after mental practice. These findings reveal that the corticocerebellar loop is a major neural circuit for skill improvement after mental practice.

Author(s):  
Yuhan Luo ◽  
Yaomin Guo ◽  
Linchang Zhong ◽  
Ying Liu ◽  
Chao Dang ◽  
...  

2003 ◽  
Vol 15 (10) ◽  
pp. 2359-2377 ◽  
Author(s):  
Liqiang Zhu ◽  
Ying-Cheng Lai ◽  
Frank C. Hoppensteadt ◽  
Jiping He

A procedure is developed to probe the changes in the functional interactions among neurons in primary motor cortex of the monkey brain during adaptation. A monkey is trained to learn a new skill, moving its arm to reach a target under the influence of external perturbations. The spike trains of multiple neurons in the primary motor cortex are recorded simultaneously. We utilize the methodology of directed transfer function, derived from a class of linear stochastic models, to quantify the causal interactions between the neurons. We find that the coupling between the motor neurons tends to increase during the adaptation but return to the original level after the adaptation. Furthermore, there is evidence that adaptation tends to affect the topology of the neural network, despite the approximate conservation of the average coupling strength in the network before and after the adaptation.


2016 ◽  
Vol 12 ◽  
pp. 277-284 ◽  
Author(s):  
D. Fraiman ◽  
M.F. Miranda ◽  
F. Erthal ◽  
P.F. Buur ◽  
M. Elschot ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Yongxin Li ◽  
Ya Wang ◽  
Chenxi Liao ◽  
Wenhua Huang ◽  
Ping Wu

In clinical practice, the effectiveness of the rehabilitation therapy such as acupuncture combining conventional Western medicine (AG) on stroke people’s motor-related brain network and their behaviors has not been systematically studied. In the present study, seventeen adult ischemic patients were collected and divided into two groups: the conventional Western medicine treatment group (CG) and the AG. The neurological deficit scores (NDS) and resting-state functional MRI data were collected before and after treatment. Compared with the CG patients, AG patients exhibited a significant enhancement of the percent changes of NDS from pre- to posttreatment intervention. All patients showed significant changes of functional connectivity (FC) between the pair of cortical motor-related regions. After treatment, both patient groups showed a recovery of brain connectivity to the nearly normal level compared with the controls in these pairs. Moreover, a significant correlation between the percent changes of NDS and the pretreatment FC values of bilateral primary motor cortex (M1) in all patients was found. In conclusion, our results showed that AG therapy can be an effective means for ischemic stroke patients to recover their motor function ability. The FC strengths between bilateral M1 of stroke patients can predict stroke patients’ treatment outcome after rehabilitation therapy.


2019 ◽  
Author(s):  
Jérémy Cousineau ◽  
Léa Lescouzères ◽  
Anne Taupignon ◽  
Lorena Delgado-Zabalza ◽  
Emmanuel Valjent ◽  
...  

AbstractDopamine (DA) plays a crucial role in the control of motor and higher cognitive functions such as learning, working memory and decision making. The primary motor cortex (M1), which is essential for motor control and the acquisition of motor skills, receives dopaminergic inputs in its superficial and deep layers from the midbrain. However, the precise action of DA and DA receptor subtypes on the cortical microcircuits of M1 remains poorly understood. The aim of this work was to investigate how DA, through the activation of D2 receptors (D2R), modulates the cellular and synaptic activity of M1 parvalbumin-expressing interneurons (PVINs) which are crucial to regulate the spike output of pyramidal neurons (PNs). By combining immunofluorescence, ex vivo electrophysiology, pharmacology and optogenetics approaches, we show that D2R activation increases neuronal excitability of PVINs and GABAergic synaptic transmission between PVINs and PNs in layer V of M1. Our data reveal a mechanism through which cortical DA modulates M1 microcircuitry and might participate in the acquisition of motor skills.Significance StatementPrimary motor cortex (M1), which is a region essential for motor control and the acquisition of motor skills, receives dopaminergic inputs from the midbrain. However, precise action of dopamine and its receptor subtypes on specific cell types in M1 remained poorly understood. Here, we demonstrate in M1 that dopamine D2 receptors (D2R) are present in parvalbumin interneurons (PVINs) and their activation increases the excitability of the PVINs, which are crucial to regulate the spike output of pyramidal neurons (PNs). Moreover the activation of the D2R facilitates the GABAergic synaptic transmission of those PVINs on layer V PNs. These results highlight how cortical dopamine modulates the functioning of M1 microcircuit which activity is disturbed in hypo- and hyperdopaminergic states.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
R. Stefan Greulich ◽  
Ramina Adam ◽  
Stefan Everling ◽  
Hansjörg Scherberger

Abstract Manipulation of an object requires us to transport our hand towards the object (reach) and close our digits around that object (grasp). In current models, reach-related information is propagated in the dorso-medial stream from posterior parietal area V6A to medial intraparietal area, dorsal premotor cortex, and primary motor cortex. Grasp-related information is processed in the dorso-ventral stream from the anterior intraparietal area to ventral premotor cortex and the hand area of primary motor cortex. However, recent studies have cast doubt on the validity of this separation in separate processing streams. We investigated in 10 male rhesus macaques the whole-brain functional connectivity of these areas using resting state fMRI at 7-T. Although we found a clear separation between dorso-medial and dorso-ventral network connectivity in support of the two-stream hypothesis, we also found evidence of shared connectivity between these networks. The dorso-ventral network was distinctly correlated with high-order somatosensory areas and feeding related areas, whereas the dorso-medial network with visual areas and trunk/hindlimb motor areas. Shared connectivity was found in the superior frontal and precentral gyrus, central sulcus, intraparietal sulcus, precuneus, and insular cortex. These results suggest that while sensorimotor processing streams are functionally separated, they can access information through shared areas.


2009 ◽  
Vol 102 (4) ◽  
pp. 2462-2476 ◽  
Author(s):  
Nicholas F. Wymbs ◽  
Scott T. Grafton

Off-line learning is facilitated when motor skills are acquired under a random practice schedule and retention suffers when a similar set of motor skills are practiced under a blocked schedule. The current study identified the neural correlates of a random training schedule while participants learned a set of four-element finger sequences using their nondominant hand during functional magnetic resonance imaging. A go/no go task was used to separately probe brain areas supporting sequence preparation and production. By the end of training, the random practice schedule, relative to the block schedule, recruited a broad premotor–parietal network as well as sensorimotor and subcortical regions during both preparation and production trials, despite equivalent motor performance. Longitudinal analysis demonstrated that preparation-related activity under a random schedule remained stable or increased over time. The blocked schedule showed the opposite pattern. Across individual subjects, successful skill retention was correlated with greater activity at the end of training in the ipsilateral left motor cortex, for both preparation and production. This is consistent with recent evidence that attributes off-line learning to training-related processing within primary motor cortex. These results reflect the importance of an overlooked aspect of motor skill learning. Specifically, how trials are organized during training—with a random schedule—provides an effective basis for the formation of enduring motor memories, through enhanced engagement of core regions involved in the active preparation and implementation of motor programs.


Author(s):  
Winifried Backhaus ◽  
Hanna Braaß ◽  
Focko L Higgen ◽  
Christian Gerloff ◽  
Robert Schulz

Abstract Recent brain imaging has evidenced that parietofrontal networks show alterations after stroke which also relate to motor recovery processes. There is converging evidence for an upregulation of parietofrontal coupling between parietal brain regions and frontal motor cortices. The majority of studies though have included only moderately to mildly affected patients, particularly in the subacute or chronic stage. Whether these network alterations will also be present in severely affected patients and early after stroke and whether such information can improve correlative models to infer motor recovery remains unclear. In this prospective cohort study, nineteen severely affected first-ever stroke patients (mean age 74 years, 12 females) were analysed which underwent resting-state functional MRI and clinical testing during the initial week after the event. Clinical evaluation of neurological and motor impairment as well as global disability was repeated after three and six months. Nineteen healthy participants of similar age and gender were also recruited. MRI data were used to calculate functional connectivity values between the ipsilesional primary motor cortex, the ventral premotor cortex, the supplementary motor area and the anterior and caudal intraparietal sulcus of the ipsilesional hemisphere. Linear regression models were estimated to compare parietofrontal functional connectivity between stroke patients and healthy controls and to relate them to motor recovery. The main finding was a significant increase in ipsilesional parietofrontal coupling between anterior intraparietal sulcus and the primary motor cortex in severely affected stroke patients (P < 0.003). This upregulation significantly contributed to correlative models explaining variability in subsequent neurological and global disability as quantified by National Institute of Health Stroke Scale and modified Rankin Scale, respectively. Patients with increased parietofrontal coupling in the acute stage showed higher levels of persistent deficits in the late subacute stage of recovery (P < 0.05). This study provides novel insights that parietofrontal networks of the ipsilesional hemisphere undergo neuroplastic alteration already very early after severe motor stroke. The association between early parietofrontal upregulation and future levels of persistent functional deficits and dependence from help in daily living might be useful in models to enhance clinical neurorehabilitative decision making.


2013 ◽  
Vol 16 (1) ◽  
pp. 13-21 ◽  
Author(s):  
Verònica Gálvez ◽  
Angelo Alonzo ◽  
Donel Martin ◽  
Colleen K. Loo

Abstract Interest in transcranial direct current stimulation (tDCS) as a new tool in neuropsychiatry has led to the need to establish optimal treatment protocols. In an intra-individual randomized cross-over design, 11 healthy volunteers received five tDCS sessions to the left primary motor cortex on consecutive weekdays at a constant or gradually increasing current intensity, in two separate weeks of testing. Cortical excitability was assessed before and after tDCS at each session through peripheral electromyographic recordings of motor-evoked potentials. Both conditions led to significant cumulative increases in cortical excitability across the week but there were no significant differences between the two groups. Motor thresholds decreased significantly from Monday to Friday in both conditions. This study demonstrated that, in the motor cortex, administration of tDCS five times per week whether at a constant intensity or at a gradually increasing intensity was equally effective in increasing cortical excitability.


Sign in / Sign up

Export Citation Format

Share Document