scholarly journals Oiling the gears of memory: quercetin exposure during memory formation, consolidation, and recall enhances memory in Lymnaea stagnalis

2021 ◽  
Author(s):  
VERONICA RIVI ◽  
Anurada Batabyal ◽  
Cristina Benatti ◽  
Joan JMC Blom ◽  
Fabio Tascedda ◽  
...  

Memory formation (short-term, intermediate-term, and long-term) is an integral process of cognition which allows individuals to retain important information and is influenced by various intrinsic and extrinsic factors. A major extrinsic factor influencing cognition across taxa is diet, which may contain rich sources of molecular agents with antioxidant, anti-inflammatory, and memory enhancing properties that potentially enhance cognitive ability. A common and abundant flavonoid present in numerous food substances is quercetin (Q) which is also known to upregulate cyclic AMP response element binding protein (CREB) in several animals including our model system Lymnaea stagnalis. Since CREB is known to be involved in long term memory (LTM) formation, we investigated the role of Q-exposure on memory formation, consolidation, and recall during operant conditioning of aerial respiratory behaviour in Lymnaea. Snails were exposed to Q 3h before or after training to ascertain its effects on LTM. Additionally, we investigated the effect of the combined presentation of a single reinforcing stimulus (at 24h post-training or 24h before training) and Q-exposure on both LTM formation and reconsolidation. Our data indicate that Q-exposure acts on the different phases of memory formation, consolidation, and recall leading to enhanced LTM formation.

2012 ◽  
Vol 215 (24) ◽  
pp. 4322-4329 ◽  
Author(s):  
M. L. Teskey ◽  
K. S. Lukowiak ◽  
H. Riaz ◽  
S. Dalesman ◽  
K. Lukowiak

2018 ◽  
Vol 373 (1756) ◽  
pp. 20170291 ◽  
Author(s):  
Sarah Dalesman

Individual differences in cognitive ability are predicted to covary with other behavioural traits such as exploration and boldness. Selection within different habitats may act to either enhance or break down covariance among traits; alternatively, changing the environmental context in which traits are assessed may result in plasticity that alters trait covariance. Pond snails, Lymnaea stagnalis , from two laboratory strains (more than 20 generations in captivity) and F1 laboratory reared from six wild populations were tested for long-term memory and exploration traits (speed and thigmotaxis) following maintenance in grouped and isolated conditions to determine if isolation: (i) alters memory and exploration; and (ii) alters covariance between memory and exploration. Populations that demonstrated strong memory formation (longer duration) under grouped conditions demonstrated weaker memory formation and reduced both speed and thigmotaxis following isolation. In wild populations, snails showed no relationship between memory and exploration in grouped conditions; however, following isolation, exploration behaviour was negatively correlated with memory, i.e. slow-explorers showing low levels of thigmotaxis formed stronger memories. Laboratory strains demonstrated no covariance among exploration traits and memory independent of context. Together these data demonstrate that the relationship between cognition and exploration traits can depend on both habitat and context-specific trait plasticity. This article is part of the theme issue ‘Causes and consequences of individual differences in cognitive abilities’.


Author(s):  
Mariaelena Tagliabue ◽  
Marco Zorzi ◽  
Carlo Umiltà ◽  
Francesca Bassignani

1966 ◽  
Vol 18 (3) ◽  
pp. 266-269 ◽  
Author(s):  
R. Conrad ◽  
A. J. Hull

It has been proposed that a single set of operations based on classical interference theory is adequate to describe the phenomena of both short- and long-term memory. An article by Keppel and Underwood (1962) argues that short-term forgetting is due to proactive interference and, by implication, not a result of trace decay. An experiment which varied retention interval and the nature of the interpolated task, gave results which indicate that when the amount forgotten and the nature of errors are considered, a decay model is supported, the proactive interference suggestion being untenable.


2020 ◽  
Vol 24 (8) ◽  
pp. 885-896
Author(s):  
L. N. Grinkevich

The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation. Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile dementia, which are often accompanied by deterioration in the learning ability and by memory impairment. Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory formation, depending on the activation or inhibition of their expression. The review presents summarized data on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active mental and physical exercises.


Sign in / Sign up

Export Citation Format

Share Document