scholarly journals Variation in root system architecture among the founder parents of two 8-way MAGIC wheat populations for selection in breeding

2021 ◽  
Author(s):  
Shree Pariyar ◽  
Kerstin A Nagel ◽  
Jonas Lentz ◽  
Anna Galinski ◽  
Jens Wilhelm ◽  
...  

Root system architecture (RSA) is a target for breeding because of the interest to develop crops with roots that use nutrients and water more effectively. Breeding for RSA requires phenotypic diversity in populations amenable to QTL identification to provide markers for large breeding programs. This study examined the variation for root traits across the parents of two multi-parent advanced generation inter-cross (MAGIC) wheat populations from NIAB and CSIRO for 16 days in an upgraded version of the non-invasive, germination paper-based phenotyping platform, GrowScreen-PaGe. Across all parents, total root length varied up to 1.90 fold, root biomass 2.25 fold and seminal root angle 1.16 fold. The CSIRO parents grew faster, exhibited slightly wider seminal root angle and produced larger root systems compared to NIAB parents. Lateral root lengths, leaf lengths and biomass contrasted most between fastest (Robigus - NIAB and AC Barrie - CSIRO) and slowest growing parents (Rialto - NIAB and G204 Xiaoyan54 - CSIRO). Lengths of lateral and total root, and leaf number and length had moderate to high heritability (0.30-0.67) and repeatability. Lengths of lateral roots and leaves are good targets for enhancing wheat crop establishment, a critical stage for crop productivity.

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2452
Author(s):  
Shree R. Pariyar ◽  
Kerstin A. Nagel ◽  
Jonas Lentz ◽  
Anna Galinski ◽  
Jens Wilhelm ◽  
...  

Root system architecture (RSA) is a target for breeding crops with effective nutrient and water use. Breeding can use populations designed to map quantitative trait loci (QTL). Here we non-invasively phenotype roots and leaves of the 16 foundation parents of two multi-parent advanced generation inter-cross (MAGIC) populations, covering diversity in spring (CSIRO MAGIC) and winter (NIAB MAGIC) wheats. RSA components varied after 16 days in the upgraded, paper-based imaging platform, GrowScreen-PaGe: lateral root length 2.2 fold; total root length, 1.9 fold; and seminal root angle 1.2 fold. RSA components total and lateral root length had the highest root heritabilities (H2) (H2 = 0.4 for CSIRO and NIAB parents) and good repeatability (r = 0.7) in the GrowScreen-PaGe. These can be combined with leaf length (H2 = 0.8 CSIRO; 0.7 NIAB) and number (H2 = 0.6 CSIRO; 0.7 NIAB) to identify root and shoot QTL to breed for wheats with vigorous RSA and shoot growth at establishment, a critical phase for crop productivity. Time resolved phenotyping of MAGIC wheats also revealed parents to cross in future for growth rate traits (fastest: Robigus–NIAB and AC Barrie–CSIRO; slowest Rialto–NIAB and G204 Xiaoyan54–CSIRO) and root: shoot allocation traits (fast growers grew roots, notably laterals, quicker than leaves, compared to slow growers).


Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1697
Author(s):  
Dinoclaudio Zacarias Rafael ◽  
Osvin Arriagada ◽  
Guillermo Toro ◽  
Jacob Mashilo ◽  
Freddy Mora-Poblete ◽  
...  

The evaluation of root system architecture (RSA) development and the physiological responses of crop plants grown under water-limited conditions are of great importance. The purpose of this study was to examine the short-term variation of the morphological and physiological plasticity of Lagenaria siceraria genotypes under water deficit, evaluating the changes in the relationship between the root system architecture and leaf physiological responses. Bottle gourd genotypes were grown in rhizoboxes under well-watered and water deficit conditions. Significant genotype-water regime interactions were observed for several RSA traits and physiological parameters. Biplot analyses confirmed that the drought-tolerant genotypes (BG-48 and GC) showed a high net CO2 assimilation rate, stomatal conductance, transpiration rates with a smaller length, and a reduced root length density of second-order lateral roots, whereas the genotypes BG-67 and Osorno were identified as drought-sensitive and showed greater values for average root length and the density of second-order lateral roots. Consequently, a reduced length and density of lateral roots in bottle gourd should constitute a response to water deficit. The root traits studied here can be used to evaluate bottle gourd performance under novel water management strategies and as criteria for breeding selection.


Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 364 ◽  
Author(s):  
Martina Roselló ◽  
Conxita Royo ◽  
Miguel Sanchez-Garcia ◽  
Jose Miguel Soriano

Roots are crucial for adaptation to drought stress. However, phenotyping root systems is a difficult and time-consuming task due to the special feature of the traits in the process of being analyzed. Correlations between root system architecture (RSA) at the early stages of development and in adult plants have been reported. In this study, the seminal RSA was analysed on a collection of 160 durum wheat landraces from 21 Mediterranean countries and 18 modern cultivars. The landraces showed large variability in RSA, and differences in root traits were found between previously identified genetic subpopulations. Landraces from the eastern Mediterranean region, which is the driest and warmest within the Mediterranean Basin, showed the largest seminal root size in terms of root length, surface, and volume and the widest root angle, whereas landraces from eastern Balkan countries showed the lowest values. Correlations were found between RSA and yield-related traits in a very dry environment. The identification of molecular markers linked to the traits of interest detected 233 marker-trait associations for 10 RSA traits and grouped them in 82 genome regions named marker-train association quantitative trait loci (MTA-QTLs). Our results support the use of ancient local germplasm to widen the genetic background for root traits in breeding programs.


2021 ◽  
Vol 22 (11) ◽  
pp. 5508
Author(s):  
Manvi Sharma ◽  
Dhriti Singh ◽  
Harshita B. Saksena ◽  
Mohan Sharma ◽  
Archna Tiwari ◽  
...  

Root system architecture (RSA) is an important developmental and agronomic trait that is regulated by various physical factors such as nutrients, water, microbes, gravity, and soil compaction as well as hormone-mediated pathways. Phytohormones act as internal mediators between soil and RSA to influence various events of root development, starting from organogenesis to the formation of higher order lateral roots (LRs) through diverse mechanisms. Apart from interaction with the external cues, root development also relies on the complex web of interaction among phytohormones to exhibit synergistic or antagonistic effects to improve crop performance. However, there are considerable gaps in understanding the interaction of these hormonal networks during various aspects of root development. In this review, we elucidate the role of different hormones to modulate a common phenotypic output, such as RSA in Arabidopsis and crop plants, and discuss future perspectives to channel vast information on root development to modulate RSA components.


2020 ◽  
Vol 28 (1) ◽  
pp. 1-12
Author(s):  
Songyang Li ◽  
Wenqi Yu ◽  
Xiaodong Liu ◽  
Miao Wang

AbstractThe root system architecture (RSA) displays complex morphological characteristics because of diverse root growth behaviors. Recent studies have revealed that swarming behavior among roots is particularly important for RSA to adapt to environmental stimuli. However, few models are proposed to simulate RSA based on swarming behavior of roots. To analyze plasticity of RSA affected by swarming behavior, we propose viewing it as a swarm of single roots. A swarming behavior model is proposed by considering repulsion, alignment, and preference of individual single roots. Then, the swarming behavior model is integrated into a simple and generic RSA model (called ArchiSimple). Lastly, characteristics of RSA affected by swarming behavior model and non-swarming behavior model are compared and analyzed under three different virtual soil sets. The characteristics of RSA (such as primary root length, lateral root length, lateral roots, and resource uptake) are significantly promoted by swarming behavior. Root system distributions can also be greatly affected by swarming behavior. These results show that root foraging and exploration in soil can be regarded as collective behavior of individual single root.


HortScience ◽  
2000 ◽  
Vol 35 (3) ◽  
pp. 440D-440
Author(s):  
R.E. Gough

In 1999, `Sweet Banana' pepper plants were grown under clean cultivation or SMR—red, silver, or black polyethylene mulches. Plants in each of three replications per treatment were field-set on 15 June. On 22 Sept., plants were excavated, and their root systems were examined. The total number of roots per plant at 5-, 10-, 15-, 20-, and 25-cm depths and 10-, 20-, 30-, 40-, 50-, and 60-cm distances from plant stems were recorded. Distribution and architecture of the root systems also were examined. Plants grown under clean cultivation developed 50 to 60 adventitious roots each, while those grown under red mulch developed about 20, and those under black and silver mulch about nine adventitious roots each. In all treatments, the adventitious roots radiated from the stem at an oblique, downward 35° angle. No plants had vertical roots. Root system architecture was similar among treatments, with 40% of the roots in the upper 5 cm of soil and 70% in the upper 10 cm. Thirty percent of roots were within 10 cm of the plant stem, and 50% were within 20 cm. Nearly 100% of the roots were located within 40 cm of the plant stem. Root count decreased with increasing depth and distance from the plant stem. Plants grown beneath the silver mulch produced the greatest number of lateral roots, followed by plants grown in clean cultivation and under black mulch. Plants grown under red mulch produced the fewest roots. Differences among treatments were significant. Colored mulches influence the total number of adventitious and lateral roots but not the root system architecture of pepper plants.


2019 ◽  
Author(s):  
Marcus Griffiths ◽  
Jonathan A. Atkinson ◽  
Laura-Jayne Gardiner ◽  
Ranjan Swarup ◽  
Michael P. Pound ◽  
...  

AbstractThe root system architecture (RSA) of a crop has a profound effect on the uptake of nutrients and consequently the potential yield. However, little is known about the genetic basis of RSA and resource adaptive responses in wheat (Triticum aestivum L.). Here, a high-throughput germination paper plant phenotyping system was used to identify seedling traits in a wheat doubled haploid mapping population, Savannah × Rialto. Significant genotypic and nitrate-N treatment variation was found across the population for seedling traits with distinct trait grouping for root size-related traits and root distribution-related traits. Quantitative trait locus (QTL) analysis identified a total of 59 seedling trait QTLs. Across two nitrate treatments, 27 root QTLs were specific to the nitrate treatment. Transcriptomic analyses for one of the QTLs on chromosome 2D found under low nitrate conditions was pursued revealing gene enrichment in N-related biological processes and 17 candidate up-regulated genes with possible involvement in a root angle response. Together, these findings provide genetic insight into root system architecture and plant adaptive responses to nitrate and provide targets that could help improve N capture in wheat.


1996 ◽  
Author(s):  
Yoav Waisel ◽  
Bobbie McMichael ◽  
Amram Eshel

Architecture of a root system is the expression of the potential of various root types to branch, to grow and to coordinate with other plant organs, under the specific limitations of the environmental conditions. The present investigation has proven the following points. 1) Genotypes with different types of root systems were identified. The growth patterns of their roots and the distribution of laterals along their main axes were recorded. 2) The patterns of development of the root systems of four cotton genotypes, throughout the entire life cycle of the plants, were described, even at such a late stage of development when the total length of the roots exceeded two kilometers. To the best of our knowledge, this is the first time that an analysis of this type is accomplished. 3) The development of root systems under restrictive soil conditions were compared with those that have developed under the non-restrictive conditions of aeroponics. Results indicate that in the absence of the mechanical impedance of the soil, cotton plants develop single roots that reach the length of 6 m, and have a total root length of 2000 m. Thus, root growth is strongly inhibited by the soil, with some root types being inhibited more than others. 4) One of the important decisions, in constructing an operational root system architecture of mature plants, is the shift of the balance between various root fractions in favor of the very fine roots. 5) Root system architecture is determined, in part, by the sites of initiation of the lateral roots. This is determined genetically by the number of xylem archs and by the totuosity of the stele. Selection for such traits should be sought.


2012 ◽  
Vol 40 (2) ◽  
pp. 80 ◽  
Author(s):  
Qiang-Sheng WU ◽  
Ying-Ning ZOU ◽  
Min LIU ◽  
Kun CHENG

Putresince (Put) as one of the important polyamines (PAs) has been identified to regulate mycorrhizal development of citrus plants. The present study was to screen an efficient concentration of Put application at the range of 0.05-1 mM on the trifoliate orange (Poncirus trifoliata) seedlings colonized by Glomus mosseae, in terms of growth, root system architecture, and chlorophyll and carbohydrate contents. Compared to the non-Put treatment, all the Put treatments, especially 0.05 mM Put, significantly increased mycorrhizal colonization of tap root in addition to first, second, and third order lateral roots. The mycorrhizal seedlings treated by 0.05, 0.1, and 1 mM Put showed greater growth (stem diameter, height, leaf number, and fresh mass) and root morphological properties ( tap root length, projected and surface areas, and volume) and higher numbers of first, second, and third order lateral roots. Bio-molecules like chlorophyll a, total chlorophyll, and carotenoid contents of the seedlings were significantly increased by the Put treatments at 0.05-1 mM. All exogenous Put application at the range of 0.05-1 mM significantly decreased sucrose contents but increased glucose contents of leaves and roots. This study suggests that exogenous Put can significantly improve growth performance and root system architecture, besides changes in physiological traits of AMF seedlings. The 0.05 mM concentration of Put showed the best effects.


Sign in / Sign up

Export Citation Format

Share Document