scholarly journals SvAnna: efficient and accurate pathogenicity prediction for coding and regulatory structural variants in long-read genome sequencing

2021 ◽  
Author(s):  
Daniel Danis ◽  
Julius O.B. Jacobsen ◽  
Parithi Balachandran ◽  
Qihui Zhu ◽  
Feyza Yilmaz ◽  
...  

Structural variants (SVs) are implicated in the etiology of Mendelian diseases but have been systematically underascertained owing to limitations of existing technology. Recent technological advances such as long-read sequencing (LRS) enable more comprehensive detection of SVs, but approaches for clinical prioritization of candidate SVs are needed. Existing computational approaches do not specifically target LRS data, thereby missing a substantial proportion of candidate SVs, and do not provide a unified computational model for assessing all types of SVs. Structural Variant Annotation and Analysis (SvAnna) assesses all classes of SV and their intersection with transcripts and regulatory sequences in the context of topologically associating domains, relating predicted effects on gene function with clinical phenotype data. We show with a collection of 182 published case reports with pathogenic SVs that SvAnna places over 90% of pathogenic SVs in the top ten ranks. The interpretable prioritizations provided by SvAnna will facilitate the widespread adoption of LRS in diagnostic genomics.

Author(s):  
Paul Vollrath ◽  
Harmeet S. Chawla ◽  
Sarah V. Schiessl ◽  
Iulian Gabur ◽  
HueyTyng Lee ◽  
...  

Abstract Key message A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Abstract Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


2019 ◽  
Author(s):  
Glenn Hickey ◽  
David Heller ◽  
Jean Monlong ◽  
Jonas A. Sibbesen ◽  
Jouni Sirén ◽  
...  

AbstractStructural variants (SVs) remain challenging to represent and study relative to point mutations despite their demonstrated importance. We show that variation graphs, as implemented in the vg toolkit, provide an effective means for leveraging SV catalogs for short-read SV genotyping experiments. We benchmarked vg against state-of-the-art SV genotypers using three sequence-resolved SV catalogs generated by recent long-read sequencing studies. In addition, we use assemblies from 12 yeast strains to show that graphs constructed directly from aligned de novo assemblies improve genotyping compared to graphs built from intermediate SV catalogs in the VCF format.


2020 ◽  
Author(s):  
Wesley Delage ◽  
Julien Thevenon ◽  
Claire Lemaitre

AbstractSince 2009, numerous tools have been developed to detect structural variants (SVs) using short read technologies. Insertions >50 bp are one of the hardest type to discover and are drastically underrepresented in gold standard variant callsets. The advent of long read technologies has completely changed the situation. In 2019, two independent cross technologies studies have published the most complete variant callsets with sequence resolved insertions in human individuals. Among the reported insertions, only 17 to 37% could be discovered with short-read based tools. In this work, we performed an in-depth analysis of these unprecedented insertion callsets in order to investigate the causes of such failures. We have first established a precise classification of insertion variants according to four layers of characterization: the nature and size of the inserted sequence, the genomic context of the insertion site and the breakpoint junction complexity. Because these levels are intertwined, we then used simulations to characterize the impact of each complexity factor on the recall of several SV callers. Simulations showed that the most impacting factor was the insertion type rather than the genomic context, with various difficulties being handled differently among the tested SV callers, and they highlighted the lack of sequence resolution for most insertion calls. Our results explain the low recall by pointing out several difficulty factors among the observed insertion features and provide avenues for improving SV caller algorithms and their [email protected]


2015 ◽  
Author(s):  
Ivan Sovic ◽  
Mile Sikic ◽  
Andreas Wilm ◽  
Shannon Nicole Fenlon ◽  
Swaine Chen ◽  
...  

Exploiting the power of nanopore sequencing requires the development of new bioinformatics approaches to deal with its specific error characteristics. We present the first nanopore read mapper (GraphMap) that uses a read-funneling paradigm to robustly handle variable error rates and fast graph traversal to align long reads with speed and very high precision (>95%). Evaluation on MinION sequencing datasets against short and long-read mappers indicates that GraphMap increases mapping sensitivity by at least 15-80%. GraphMap alignments are the first to demonstrate consensus calling with <1 error in 100,000 bases, variant calling on the human genome with 76% improvement in sensitivity over the next best mapper (BWA-MEM), precise detection of structural variants from 100bp to 4kbp in length and species and strain-specific identification of pathogens using MinION reads. GraphMap is available open source under the MIT license at https://github.com/isovic/graphmap.


2022 ◽  
Author(s):  
Claire M&eacuterot ◽  
Kristina S R Stenl&oslashkk ◽  
Clare Venney ◽  
Martin Laporte ◽  
Michel Moser ◽  
...  

The parallel evolution of nascent pairs of ecologically differentiated species offers an opportunity to get a better glimpse at the genetic architecture of speciation. Of particular interest is our recent ability to consider a wider range of genomic variants, not only single-nucleotide polymorphisms (SNPs), thanks to long-read sequencing technology. We can now identify structural variants (SVs) like insertions, deletions, and other structural rearrangements, allowing further insights into the genetic architecture of speciation and how different variants are involved in species differentiation. Here, we investigated genomic patterns of differentiation between sympatric species pairs (Dwarf and Normal) belonging to the Lake Whitefish (Coregonus clupeaformis) species complex. We assembled the first reference genomes for both Dwarf and Normal Lake Whitefish, annotated the transposable elements, and analysed the genome in the light of related coregonid species. Next, we used a combination of long-read and short-read sequencing to characterize SVs and genotype them at population-scale using genome-graph approaches, showing that SVs cover five times more of the genome than SNPs. We then integrated both SNPs and SVs to investigate the genetic architecture of species differentiation in two different lakes and highlighted an excess of shared outliers of differentiation. In particular, a large fraction of SVs differentiating the two species was driven by transposable elements (TEs), suggesting that TE accumulation during a period of allopatry predating secondary contact may have been a key process in the speciation of the Dwarf and Normal Whitefish. Altogether, our results suggest that SVs play an important role in speciation and that by combining second and third generation sequencing we now have the ability to integrate SVs into speciation genomics.


2017 ◽  
Author(s):  
Mircea Cretu Stancu ◽  
Markus J. van Roosmalen ◽  
Ivo Renkens ◽  
Marleen Nieboer ◽  
Sjors Middelkamp ◽  
...  

AbstractStructural genomic variants form a common type of genetic alteration underlying human genetic disease and phenotypic variation. Despite major improvements in genome sequencing technology and data analysis, the detection of structural variants still poses challenges, particularly when variants are of high complexity. Emerging long-read single-molecule sequencing technologies provide new opportunities for detection of structural variants. Here, we demonstrate sequencing of the genomes of two patients with congenital abnormalities using the ONT MinION at 11x and 16x mean coverage, respectively. We developed a bioinformatic pipeline - NanoSV - to efficiently map genomic structural variants (SVs) from the long-read data. We demonstrate that the nanopore data are superior to corresponding short-read data with regard to detection of de novo rearrangements originating from complex chromothripsis events in the patients. Additionally, genome-wide surveillance of SVs, revealed 3,253 (33%) novel variants that were missed in short-read data of the same sample, the majority of which are duplications < 200bp in size. Long sequencing reads enabled efficient phasing of genetic variations, allowing the construction of genome-wide maps of phased SVs and SNVs. We employed read-based phasing to show that all de novo chromothripsis breakpoints occurred on paternal chromosomes and we resolved the long-range structure of the chromothripsis. This work demonstrates the value of long-read sequencing for screening whole genomes of patients for complex structural variants.


2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii351-iii351
Author(s):  
Frank Dubois ◽  
Ofer Shapira ◽  
Noah Greenwald ◽  
Travis Zack ◽  
Jessica W Tsai ◽  
...  

Abstract BACKGROUND Driver single nucleotide variants (SNV) and somatic copy number aberrations (SCNA) of pediatric high-grade glioma (pHGGs), including Diffuse Midline Gliomas (DMGs) are characterized. However, structural variants (SVs) in pHGGs and the mechanisms through which they contribute to glioma formation have not been systematically analyzed genome-wide. METHODS Using SvABA for SVs as well as the latest pipelines for SCNAs and SNVs we analyzed whole-genome sequencing from 174 patients. This includes 60 previously unpublished samples, 43 of which are DMGs. Signature analysis allowed us to define pHGG groups with shared SV characteristics. Significantly recurring SV breakpoints and juxtapositions were identified with algorithms we recently developed and the findings were correlated with RNAseq and H3K27ac ChIPseq. RESULTS The SV characteristics in pHGG showed three groups defined by either complex, intermediate or simple signature activities. These associated with distinct combinations of known driver oncogenes. Our statistical analysis revealed recurring SVs in the topologically associating domains of MYCN, MYC, EGFR, PDGFRA & MET. These correlated with increased mRNA expression and amplification of H3K27ac peaks. Complex recurring amplifications showed characteristics of extrachromosomal amplicons and were enriched in coding SVs splitting protein regulatory from effector domains. Integrative analysis of all SCNAs, SNVs & SVs revealed patterns of characteristic combinations between potential drivers and signatures. This included two distinct groups of H3K27M DMGs with either complex or simple signatures and different combinations of associated variants. CONCLUSION Recurrent SVs associate with signatures shaped by an underlying process, which can lead to distinct mechanisms to activate the same oncogene.


2021 ◽  
Vol 23 (12) ◽  
pp. 1732-1740
Author(s):  
Aruna Rangan ◽  
Molly S. Hein ◽  
William G. Jenkinson ◽  
Tejaswi Koganti ◽  
Ross A. Aleff ◽  
...  

2019 ◽  
Vol 7 (2) ◽  
pp. 391-402 ◽  
Author(s):  
Yaoxi He ◽  
Haiyi Lou ◽  
Chaoying Cui ◽  
Lian Deng ◽  
Yang Gao ◽  
...  

Abstract Structural variants (SVs) may play important roles in human adaptation to extreme environments such as high altitude but have been under-investigated. Here, combining long-read sequencing with multiple scaffolding techniques, we assembled a high-quality Tibetan genome (ZF1), with a contig N50 length of 24.57 mega-base pairs (Mb) and a scaffold N50 length of 58.80 Mb. The ZF1 assembly filled 80 remaining N-gaps (0.25 Mb in total length) in the reference human genome (GRCh38). Markedly, we detected 17 900 SVs, among which the ZF1-specific SVs are enriched in GTPase activity that is required for activation of the hypoxic pathway. Further population analysis uncovered a 163-bp intronic deletion in the MKL1 gene showing large divergence between highland Tibetans and lowland Han Chinese. This deletion is significantly associated with lower systolic pulmonary arterial pressure, one of the key adaptive physiological traits in Tibetans. Moreover, with the use of the high-quality de novo assembly, we observed a much higher rate of genome-wide archaic hominid (Altai Neanderthal and Denisovan) shared non-reference sequences in ZF1 (1.32%–1.53%) compared to other East Asian genomes (0.70%–0.98%), reflecting a unique genomic composition of Tibetans. One such archaic hominid shared sequence—a 662-bp intronic insertion in the SCUBE2 gene—is enriched and associated with better lung function (the FEV1/FVC ratio) in Tibetans. Collectively, we generated the first high-resolution Tibetan reference genome, and the identified SVs may serve as valuable resources for future evolutionary and medical studies.


Sign in / Sign up

Export Citation Format

Share Document