scholarly journals A Ca2+ wave generates a force during cell extrusion in zebrafish

2021 ◽  
Author(s):  
Sohei Yamada ◽  
Yasumasa Bessho ◽  
Yasuyuki Fijita ◽  
Yoichiroh Hosokawa ◽  
Takaaki Matsui

When oncogenic transformed or damaged cells appear within an epithelial sheet, they are apically extruded by surrounding cells. Recently, using cultured mammalian epithelial cells and zebrafish embryonic epithelial cells, we found that a calcium (Ca2+) wave propagates from RasV12-transformed cells and laser-irradiated damaged cells to surrounding cells and promotes apical extrusion by inducing polarized movements of the surrounding cells. In mammalian cell cultures, we reported that the inositol trisphosphate (IP3) receptor, gap junctions, and the mechanosensitive Ca2+ channel TRPC1 are involved in Ca2+ wave-mediated polarized movements. However, which molecules regulate Ca2+ wave-mediated polarized movements in zebrafish and whether the Ca2+ wave can generate a force remain unknown. In this study, we aimed to answer these questions. By performing pharmacological and gene knockout experiments, we showed that a Ca2+ wave induced by the IP3 receptor and trpc1 led to formation of cryptic-lamellipodia and polarized movements of surrounding cells toward extruding cells in zebrafish. By using an in vivo force measurement method, we found that the Ca2+ wave generated approximately 1 kPa of force toward extruding cells. Our results reveal a previously unidentified molecular mechanism underlying the Ca2+ wave in zebrafish and demonstrate that the Ca2+ wave generates a force during cell extrusion.

2018 ◽  
Author(s):  
Laura Andrés-Delgado ◽  
Alexander Ernst ◽  
María Galardi-Castilla ◽  
David Bazaga ◽  
Marina Peralta ◽  
...  

ABSTRACTThe epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis it arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using the zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging we reveal that a coordinated collective movement of the dorsal pericardium drives PE formation. We found that PE cells are apically extruded in response to actomyosin activity. Our results reveal that the coordinated action of Notch/Bmp pathways is critically needed for apical extrusion of PE cells. More generally, by comparison to cell extrusion for the elimination of unfit cells from epithelia, our results describe a unique mechanism where extruded cell viability is maintained.


2013 ◽  
Vol 81 (8) ◽  
pp. 2920-2930 ◽  
Author(s):  
Geoffrey Gonzalez-Escobedo ◽  
John S. Gunn

ABSTRACTAlthough typhoid fever has been intensively studied, chronic typhoid carriage still represents a problem for the transmission and persistence of the disease in areas of endemicity. This chronic state is highly associated with the presence of gallstones in the gallbladder of infected carriers upon whichSalmonellacan form robust biofilms. However, we hypothesize that in addition to gallstones, the gallbladder epithelium aids in the establishment/maintenance of chronic carriage. In this work, we present evidence of the role of the gallbladder epithelium in chronic carriage by a mechanism involving invasion, intracellular persistence, and biofilm formation.Salmonellawas able to adhere to and invade polarized gallbladder epithelial cells apically in the absence and presence of bile in aSalmonellapathogenicity island 1 (SPI-1)-dependent manner. Intracellular replication ofSalmonellawas also evident at 12 and 24 h postinvasion. A flowthrough system revealed thatSalmonellais able to adhere to and form extensive bacterial foci on gallbladder epithelial cells as early as 12 h postinoculation.In vivoexperiments using a chronic mouse model of typhoid carriage showed invasion and damage of the gallbladder epithelium and lamina propria up to 2 months afterSalmonellainfection, with an abundant presence of macrophages, a relative absence of neutrophils, and extrusion of infected epithelial cells. Additionally, microcolonies ofSalmonellacells were evident on the surface of the mouse gallbladder epithelia up to 21 days postinfection. These data reveal a second potential mechanism, intracellular persistence and/or bacterial aggregation in/on the gallbladder epithelium with luminal cell extrusion, forSalmonellamaintenance in the gallbladder.


2001 ◽  
Vol 7 (S2) ◽  
pp. 580-581
Author(s):  
CA Witz ◽  
S Cho ◽  
VE Centonze ◽  
IA Montoya-Rodriguez ◽  
RS Schenken

Using human peritoneal explants, we have previously demonstrated that endometrial stromal cells (ESCs) and endometrial epithelial cells (EECs) attach to intact mesothelium. Attachment occurs within one hour and mesothelial invasion occurs within 18 hours (Figure 1). We have also demonstrated that, in vivo, the mesothelium overlies a continuous layer of collagen IV (Col IV).More recently we have used CLSM, to study the mechanism and time course of ESC and EEC attachment and invasion through mesothelial monolayers. in these studies, CellTracker® dyes were used to label cells. Mesothelial cells were labeled with chloromethylbenzoylaminotetramethylrhodamine (CellTracker Orange). Mesothelial cells were then plated on human collagen IV coated, laser etched coverslips. Mesothelial cells were cultured to subconfluence. ESCs and EECs, labeled with chloromethylfluorscein diacetate (CellTracker Green) were plated on the mesothelial monolayers. Cultures were examined at 1, 6, 12 and 24 hours with simultaneous differential interference contrast and CLSM.


1993 ◽  
Vol 21 (2) ◽  
pp. 191-195 ◽  
Author(s):  
Knut-Jan Andersen ◽  
Erik Ilsø Christensen ◽  
Hogne Vik

The tissue culture of multicellular spheroids from the renal epithelial cell line LLC-PK1 (proximal tubule) is described. This represents a biological system of intermediate complexity between renal tissue in vivo and simple monolayer cultures. The multicellular structures, which show many similarities to kidney tubules in vivo, including a vectorial water transport, should prove useful for studying the potential nephrotoxicity of drugs and chemicals in vitro. In addition, the propagation of renal epithelial cells as multicellular spheroids in serum-free culture may provide information on the release of specific biological parameters, which may be suppressed or masked in serum-supplemented media.


Sign in / Sign up

Export Citation Format

Share Document