scholarly journals Multiple stage hydra effect in a stage-structured prey-predator model

2021 ◽  
Author(s):  
Michel IS Costa ◽  
Lucas dos Anjos ◽  
Pedro V Esteves

In this work, we show by means of numerical bifurcation that two alternative stable states exhibit a hydra effect in a continuous-time stage-structured predator-prey model. We denote this behavior as a stage multiple hydra effect. This concomitant effect can have significant implications in population dynamics as well as in population management.

2018 ◽  
Vol 28 (11) ◽  
pp. 2131-2159 ◽  
Author(s):  
Willian Cintra ◽  
Cristian Morales-Rodrigo ◽  
Antonio Suárez

In this paper, we study the existence and non-existence of coexistence states for a cross-diffusion system arising from a prey–predator model with a predator satiation term. We use mainly bifurcation methods and a priori bounds to obtain our results. This leads us to study the coexistence region and compare our results with the classical linear diffusion predator–prey model. Our results suggest that when there is no abundance of prey, the predator needs to be a good hunter to survive.


Author(s):  
F. Adi-Kusumo ◽  
L. Aryati ◽  
S. Risdayati ◽  
S. Norhidayah

We introduce a mathematical model that shows the interaction dynamics between the uninfected and the infected cancer cell populations with oncolytic viruses for the benign and the malignant cancer cases. There are two important parameters in our model that represent the malignancy level of the cancer cells and the efficacy of the therapy. The parameters play an important role to determine the possibility to have successful therapy for cancer. Our model is based on the predator-prey model with logistic growth, functional response, and the saturation effect that show the possibility for the virus to be deactivated and blocked by the human immune system after they reach a certain value. In this paper, we consider the appearance of the Hopf bifurcation on the system to characterize the treatment response based on the malignancy effect of the disease. We employ numerical bifurcation analysis when the value of the malignancy parameter is varied to understand the dynamics of the system.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xue Zhang ◽  
Qing-ling Zhang

This paper studies systematically a differential-algebraic prey-predator model with time delay and Allee effect. It shows that transcritical bifurcation appears when a variation of predator handling time is taken into account. This model also exhibits singular induced bifurcation as the economic revenue increases through zero, which causes impulsive phenomenon. It can be noted that the impulsive phenomenon can be much weaker by strengthening Allee effect in numerical simulation. On the other hand, at a critical value of time delay, the model undergoes a Hopf bifurcation; that is, the increase of time delay destabilizes the model and bifurcates into small amplitude periodic solution. Moreover, a state delayed feedback control method, which can be implemented by adjusting the harvesting effort for biological populations, is proposed to drive the differential-algebraic system to a steady state. Finally, by using Matlab software, numerical simulations illustrate the effectiveness of the results.


2019 ◽  
Vol 29 (14) ◽  
pp. 1950199
Author(s):  
Mohammed Fathy Elettreby ◽  
Aisha Khawagi ◽  
Tamer Nabil

In this paper, we propose a discrete Lotka–Volterra predator–prey model with Holling type-I and -II functional responses. We investigate the stability of the fixed points of this model. Also, we study the effects of changing each control parameter on the long-time behavior of the model. This model contains a lot of complex dynamical behaviors ranging from a stable fixed point to chaotic attractors. Finally, we illustrate the analytical results by some numerical simulations.


2019 ◽  
Vol 29 (13) ◽  
pp. 1950185 ◽  
Author(s):  
Ting Qiao ◽  
Yongli Cai ◽  
Shengmao Fu ◽  
Weiming wang

In this paper, we investigate the influence of anti-predator behavior in prey due to the fear of predators with a Beddington–DeAngelis prey–predator model analytically and numerically. We give the existence and stability of equilibria of the model, and provide the existence of Hopf bifurcation. In addition, we investigate the influence of the fear effect on the population dynamics of the model and find that the fear effect can not only reduce the population density of both predator and prey, but also prevent the occurrence of limit cycle oscillation and increase the stability of the system.


2017 ◽  
Vol 59 (2) ◽  
pp. 155-166
Author(s):  
J. PROMRAK ◽  
G. C. WAKE ◽  
C. RATTANAKUL

Mealybug is an important pest of cassava plant in Thailand and tropical countries, leading to severe damage of crop yield. One of the most successful controls of mealybug spread is using its natural enemies such as green lacewings, where the development of mathematical models forecasting mealybug population dynamics improves implementation of biological control. In this work, the Sharpe–Lotka–McKendrick equation is extended and combined with an integro-differential equation to study population dynamics of mealybugs (prey) and released green lacewings (predator). Here, an age-dependent formula is employed for mealybug population. The solutions and the stability of the system are considered. The steady age distributions and their bifurcation diagrams are presented. Finally, the threshold of the rate of released green lacewings for mealybug extermination is investigated.


2010 ◽  
Vol 20 (09) ◽  
pp. 2657-2669 ◽  
Author(s):  
P. E. KLOEDEN ◽  
C. PÖTZSCHE

Besides being structurally unstable, the Lotka–Volterra predator-prey model has another shortcoming due to the invalidity of the principle of mass action when the populations are very small. This leads to extremely large populations recovering from unrealistically small ones. The effects of linear modifications to structurally unstable continuous-time predator-prey models in a (small) neighbourhood of the origin are investigated here. In particular, it is shown that typically either a global attractor or repeller arises depending on the choice of coefficients.The analysis is based on Poincaré mappings, which allow an explicit representation for the classical Lotka–Volterra equations.


2022 ◽  
Vol 355 ◽  
pp. 03048
Author(s):  
Bochen Han ◽  
Shengming Yang ◽  
Guangping Zeng

In this paper, we consider a predator-prey system with two time delays, which describes a prey–predator model with parental care for predators. The local stability of the positive equilibrium is analysed. By choosing the two time delays as the bifurcation parameter, the existence of Hopf bifurcation is studied. Numerical simulations show the positive equilibrium loses its stability via the Hopf bifurcation when the time delay increases beyond a threshold.


2016 ◽  
Vol 26 (12) ◽  
pp. 1650203 ◽  
Author(s):  
Jingli Ren ◽  
Xueping Li

A seasonally forced predator–prey system with generalized Holling type IV functional response is considered in this paper. The influence of seasonal forcing on the system is investigated via numerical bifurcation analysis. Bifurcation diagrams for periodic solutions of periods one and two, containing bifurcation curves of codimension one and bifurcation points of codimension two, are obtained by means of a continuation technique, corresponding to different bifurcation cases of the unforced system illustrated in five bifurcation diagrams. The seasonally forced model exhibits more complex dynamics than the unforced one, such as stable and unstable periodic solutions of various periods, stable and unstable quasiperiodic solutions, and chaotic motions through torus destruction or cascade of period doublings. Finally, some phase portraits and corresponding Poincaré map portraits are given to illustrate these different types of solutions.


2018 ◽  
Vol 36 (3) ◽  
pp. 89-102
Author(s):  
Z. Lajmiri ◽  
Reza Khoshsiar Ghaziani ◽  
M. Guasemi

We perform a bifurcation analysis of a predator-prey model with Holling functional response. The analysis is carried out both analytically and numerically. We use dynamical toolbox MATCONT to perform numerical bifurcation analysis. Our bifurcation analysis of the model indicates that it exhibits numerous types of bifurcation phenomena, including fold, subcritical Hopf, cusp, Bogdanov-Takens. By starting from a Hopf bifurcation point, we approximate limit cycles which are obtained, step by step, using numerical continuation method and compute orbitally asymptotically stable periodic orbits.


Sign in / Sign up

Export Citation Format

Share Document