scholarly journals Uncertainty quantification in subject-specific estimation of local vessel mechanical properties

2021 ◽  
Author(s):  
Bruno V Rego ◽  
Dar Weiss ◽  
Matthew R Bersi ◽  
Jay D Humphrey

Quantitative estimation of local mechanical properties remains critically important in the ongoing effort to elucidate how blood vessels establish, maintain, or lose mechanical homeostasis. Recent advances based on panoramic digital image correlation (pDIC) have made high-fidelity 3D reconstructions of small-animal (e.g., murine) vessels possible when imaged in a variety of quasi-statically loaded configurations. While we have previously developed and validated inverse modeling approaches to translate pDIC-measured surface deformations into biomechanical metrics of interest, our workflow did not heretofore include a methodology to quantify uncertainties associated with local point estimates of mechanical properties. This limitation has compromised our ability to infer biomechanical properties on a subject-specific basis, such as whether stiffness differs significantly between multiple material locations on the same vessel or whether stiffness differs significantly between multiple vessels at a corresponding material location. In the present study, we have integrated a novel uncertainty quantification and propagation pipeline within our inverse modeling approach, relying on empirical and analytic Bayesian techniques. To demonstrate the approach, we present illustrative results for the ascending thoracic aorta from three mouse models, quantifying uncertainties in constitutive model parameters as well as circumferential and axial tangent stiffness. Our extended workflow not only allows parameter uncertainties to be systematically reported, but also facilitates both subject-specific and group-level statistical analyses of the mechanics of the vessel wall.


Author(s):  
Georg A. Mensah ◽  
Luca Magri ◽  
Jonas P. Moeck

Thermoacoustic instabilities are a major threat for modern gas turbines. Frequency-domain-based stability methods, such as network models and Helmholtz solvers, are common design tools because they are fast compared to compressible flow computations. They result in an eigenvalue problem, which is nonlinear with respect to the eigenvalue. Thus, the influence of the relevant parameters on mode stability is only given implicitly. Small changes in some model parameters, may have a great impact on stability. The assessment of how parameter uncertainties propagate to system stability is therefore crucial for safe gas turbine operation. This question is addressed by uncertainty quantification. A common strategy for uncertainty quantification in thermoacoustics is risk factor analysis. One general challenge regarding uncertainty quantification is the sheer number of uncertain parameter combinations to be quantified. For instance, uncertain parameters in an annular combustor might be the equivalence ratio, convection times, geometrical parameters, boundary impedances, flame response model parameters, etc. A new and fast way to obtain algebraic parameter models in order to tackle the implicit nature of the problem is using adjoint perturbation theory. This paper aims to further utilize adjoint methods for the quantification of uncertainties. This analytical method avoids the usual random Monte Carlo (MC) simulations, making it particularly attractive for industrial purposes. Using network models and the open-source Helmholtz solver PyHoltz, it is also discussed how to apply the method with standard modeling techniques. The theory is exemplified based on a simple ducted flame and a combustor of EM2C laboratory for which experimental data are available.



2020 ◽  
Author(s):  
Jonas Sukys ◽  
Marco Bacci

<div> <div>SPUX (Scalable Package for Uncertainty Quantification in "X") is a modular framework for Bayesian inference and uncertainty quantification. The SPUX framework aims at harnessing high performance scientific computing to tackle complex aquatic dynamical systems rich in intrinsic uncertainties,</div> <div>such as ecological ecosystems, hydrological catchments, lake dynamics, subsurface flows, urban floods, etc. The challenging task of quantifying input, output and/or parameter uncertainties in such stochastic models is tackled using Bayesian inference techniques, where numerical sampling and filtering algorithms assimilate prior expert knowledge and available experimental data. The SPUX framework greatly simplifies uncertainty quantification for realistic computationally costly models and provides an accessible, modular, portable, scalable, interpretable and reproducible scientific workflow. To achieve this, SPUX can be coupled to any serial or parallel model written in any programming language (e.g. Python, R, C/C++, Fortran, Java), can be installed either on a laptop or on a parallel cluster, and has built-in support for automatic reports, including algorithmic and computational performance metrics. I will present key SPUX concepts using a simple random walk example, and showcase recent realistic applications for catchment and lake models. In particular, uncertainties in model parameters, meteorological inputs, and data observation processes are inferred by assimilating available in-situ and remotely sensed datasets.</div> </div>



2021 ◽  
Vol 247 ◽  
pp. 20005
Author(s):  
Dan G. Cacuci

This invited presentation summarizes new methodologies developed by the author for performing high-order sensitivity analysis, uncertainty quantification and predictive modeling. The presentation commences by summarizing the newly developed 3rd-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for linear systems, which overcomes the “curse of dimensionality” for sensitivity analysis and uncertainty quantification of a large variety of model responses of interest in reactor physics systems. The use of the exact expressions of the 2nd-, and 3rd-order sensitivities computed using the 3rd-ASAM is subsequently illustrated by presenting 3rd-order formulas for the first three cumulants of the response distribution, for quantifying response uncertainties (covariance, skewness) stemming from model parameter uncertainties. The use of the 1st-, 2nd-, and 3rd-order sensitivities together with the formulas for the first three cumulants of the response distribution are subsequently used in the newly developed 2nd/3rd-BERRU-PM (“Second/Third-Order Best-Estimated Results with Reduced Uncertainties Predictive Modeling”), which aims at overcoming the curse of dimensionality in predictive modeling. The 2nd/3rd-BERRU-PM uses the maximum entropy principle to eliminate the need for introducing a subjective user-defined “cost functional quantifying the discrepancies between measurements and computations.” By utilizing the 1st-, 2nd- and 3rd-order response sensitivities to combine experimental and computational information in the joint phase-space of responses and model parameters, the 2nd/3rd-BERRU-PM generalizes the current data adjustment/assimilation methodologies. Even though all of the 2nd- and 3rd-order are comprised in the mathematical framework of the 2nd/3rd-BERRU-PM formalism, the computations underlying the 2nd/3rd-BERRU-PM require the inversion of a single matrix of dimensions equal to the number of considered responses, thus overcoming the curse of dimensionality which would affect the inversion of hessian and higher-order matrices in the parameter space.





Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 161
Author(s):  
Philipp J. Wenig ◽  
Ruiyun Ji ◽  
Stephan Kelm ◽  
Markus Klein

Numerical simulations are subject to uncertainties due to the imprecise knowledge of physical properties, model parameters, as well as initial and boundary conditions. The assessment of these uncertainties is required for some applications. In the field of Computational Fluid Dynamics (CFD), the reliable prediction of hydrogen distribution and pressure build-up in nuclear reactor containment after a severe reactor accident is a representative application where the assessment of these uncertainties is of essential importance. The inital and boundary conditions that significantly influence the present buoyancy-driven flow are subject to uncertainties. Therefore, the aim is to investigate the propagation of uncertainties in input parameters to the results variables. As a basis for the examination of a representative reactor test containment, the investigations are initially carried out using the Differentially Heated Cavity (DHC) of aspect ratio 4 with Ra=2×109 as a test case from the literature. This allows for gradual method development for guidelines to quantify the uncertainty of natural convection flows in large-scale industrial applications. A dual approach is applied, in which Large Eddy Simulation (LES) is used as reference for the Unsteady Reynolds-Averaged Navier–Stokes (URANS) computations. A methodology for the uncertainty quantification in engineering applications with a preceding mesh convergence study and sensitivity analysis is presented. By taking the LES as a reference, the results indicate that URANS is able to predict the underlying mixing process at Ra=2×109 and the variability of the result variables due to parameter uncertainties.



2020 ◽  
Vol 11 ◽  
Author(s):  
Pras Pathmanathan ◽  
Suran K. Galappaththige ◽  
Jonathan M. Cordeiro ◽  
Abouzar Kaboudian ◽  
Flavio H. Fenton ◽  
...  

Computational modeling of cardiac electrophysiology (EP) has recently transitioned from a scientific research tool to clinical applications. To ensure reliability of clinical or regulatory decisions made using cardiac EP models, it is vital to evaluate the uncertainty in model predictions. Model predictions are uncertain because there is typically substantial uncertainty in model input parameters, due to measurement error or natural variability. While there has been much recent uncertainty quantification (UQ) research for cardiac EP models, all previous work has been limited by either: (i) considering uncertainty in only a subset of the full set of parameters; and/or (ii) assigning arbitrary variation to parameters (e.g., ±10 or 50% around mean value) rather than basing the parameter uncertainty on experimental data. In our recent work we overcame the first limitation by performing UQ and sensitivity analysis using a novel canine action potential model, allowing all parameters to be uncertain, but with arbitrary variation. Here, we address the second limitation by extending our previous work to use data-driven estimates of parameter uncertainty. Overall, we estimated uncertainty due to population variability in all parameters in five currents active during repolarization: inward potassium rectifier, transient outward potassium, L-type calcium, rapidly and slowly activating delayed potassium rectifier; 25 parameters in total (all model parameters except fast sodium current parameters). A variety of methods was used to estimate the variability in these parameters. We then propagated the uncertainties through the model to determine their impact on predictions of action potential shape, action potential duration (APD) prolongation due to drug block, and spiral wave dynamics. Parameter uncertainty had a significant effect on model predictions, especially L-type calcium current parameters. Correlation between physiological parameters was determined to play a role in physiological realism of action potentials. Surprisingly, even model outputs that were relative differences, specifically drug-induced APD prolongation, were heavily impacted by the underlying uncertainty. This is the first data-driven end-to-end UQ analysis in cardiac EP accounting for uncertainty in the vast majority of parameters, including first in tissue, and demonstrates how future UQ could be used to ensure model-based decisions are robust to all underlying parameter uncertainties.



2021 ◽  
Vol 247 ◽  
pp. 00002
Author(s):  
Dan G. Cacuci

This invited presentation summarizes new methodologies developed by the author for performing high-order sensitivity analysis, uncertainty quantification and predictive modeling. The presentation commences by summarizing the newly developed 3rd-Order Adjoint Sensitivity Analysis Methodology (3rd-ASAM) for linear systems, which overcomes the “curse of dimensionality” for sensitivity analysis and uncertainty quantification of a large variety of model responses of interest in reactor physics systems. The use of the exact expressions of the 2nd-, and 3rd-order sensitivities computed using the 3rd-ASAM is subsequently illustrated by presenting 3rd-order formulas for the first three cumulants of the response distribution, for quantifying response uncertainties (covariance, skewness) stemming from model parameter uncertainties. The use of the 1st-, 2nd-, and 3rd-order sensitivities together with the formulas for the first three cumulants of the response distribution are subsequently used in the newly developed 2nd/3rd-BERRU-PM (“Second/Third-Order Best-Estimated Results with Reduced Uncertainties Predictive Modeling”), which aims at overcoming the curse of dimensionality in predictive modeling. The 2nd/3rd-BERRU-PM uses the maximum entropy principle to eliminate the need for introducing a subjective user-defined “cost functional quantifying the discrepancies between measurements and computations.” By utilizing the 1st-, 2nd- and 3rd-order response sensitivities to combine experimental and computational information in the joint phase-space of responses and model parameters, the 2nd/3rd-BERRU-PM generalizes the current data adjustment/assimilation methodologies. Even though all of the 2nd- and 3rd-order are comprised in the mathematical framework of the 2nd/3rd-BERRU-PM formalism, the computations underlying the 2nd/3rd-BERRU-PM require the inversion of a single matrix of dimensions equal to the number of considered responses, thus overcoming the curse of dimensionality which would affect the inversion of hessian and higher-order matrices in the parameter space.



Sign in / Sign up

Export Citation Format

Share Document