scholarly journals Regulation of sexually dimorphic abdominal courtship behaviors in Drosophila by the Tlx/tailless-like nuclear receptor, Dissatisfaction

2021 ◽  
Author(s):  
Julia C Duckhorn ◽  
Jessica Cande ◽  
Mary C Metkus ◽  
Hyeop Song ◽  
Sofia Altamirano ◽  
...  

Sexually dimorphic courtship behaviors in Drosophila melanogaster develop from the activity of the sexual differentiation genes, doublesex (dsx) and fruitless (fru), functioning with other regulatory factors that have received little attention. The dissatisfaction gene (dsf) encodes an orphan nuclear receptor homologous to vertebrate Tlx and Drosophila tailless that is critical for the development of several aspects of female- and male-specific sexual behaviors. Here, we report the pattern of dsf expression in the central nervous system and show that the activity of sexually dimorphic abdominal interneurons that co-express dsf and dsx is necessary and sufficient for vaginal plate opening in virgin females and abdominal curling in males during courtship. We find that dsf activity results in different neuroanatomical outcomes in females and males, promoting and suppressing, respectively, female development and function of the DDAG neurons depending upon the sexual state of dsx expression. We posit that dsf and dsx interact to specify sex differences in the neural circuitry for dimorphic abdominal behaviors.

2016 ◽  
Vol 14 (1) ◽  
pp. nrs.14002 ◽  
Author(s):  
Shailaja D. Divekar ◽  
Deanna M. Tiek ◽  
Aileen Fernandez ◽  
Rebecca B. Riggins

Estrogen-related receptors (ERRs) are founding members of the orphan nuclear receptor (ONR) subgroup of the nuclear receptor superfamily. Twenty-seven years of study have yet to identify cognate ligands for the ERRs, though they have firmly placed ERRα (ESRRA) and ERRγ (ESRRG) at the intersection of cellular metabolism and oncogenesis. The pace of discovery for novel functions of ERRβ (ESRRB), however, has until recently been somewhat slower than that of its family members. ERRβ has also been largely ignored in summaries and perspectives of the ONR literature. Here, we provide an overview of established and emerging knowledge of ERRβ in mouse, man, and other species, highlighting unique aspects of ERRβ biology that set it apart from the other two estrogen-related receptors, with a focus on the impact of alternative splicing on the structure and function of this receptor.


Biochimie ◽  
2005 ◽  
Vol 87 (1) ◽  
pp. 21-25 ◽  
Author(s):  
S Laitinen ◽  
C Fontaine ◽  
JC Fruchart ◽  
B Staels

Nature ◽  
2004 ◽  
Vol 427 (6969) ◽  
pp. 78-83 ◽  
Author(s):  
Yanhong Shi ◽  
D. Chichung Lie ◽  
Philippe Taupin ◽  
Kinichi Nakashima ◽  
Jasodhara Ray ◽  
...  

Endocrinology ◽  
2021 ◽  
Author(s):  
Adam T Nelson ◽  
Yu Wang ◽  
Erik R Nelson

Abstract TLX (NR2E1), an orphan member of the nuclear receptor superfamily, is a transcription factor that has been described to be generally repressive in nature. It has been implicated in several aspects of physiology and disease. TLX is best known for its ability to regulate the proliferation of neural stem cells and retinal progenitor cells. Dysregulation, overexpression, or loss of TLX expression has been characterized in numerous studies focused on a diverse range of pathological conditions, including: abnormal brain development, psychiatric disorders, retinopathies, metabolic disease, and malignant neoplasm. Despite the lack of an identified endogenous ligand, several studies have described putative synthetic and natural TLX ligands, suggesting that this receptor may serve as a therapeutic target. Therefore, this article aims to briefly review what is known about TLX structure and function in normal physiology, and provide an overview of TLX in regard to pathological conditions. Particular emphasis is placed on TLX and cancer, and the potential utility of this receptor as a therapeutic target.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Shunfan Wu ◽  
Chao Guo ◽  
Huan Zhao ◽  
Mengshi Sun ◽  
Jie Chen ◽  
...  

Abstract Animals perform or terminate particular behaviors by integrating external cues and internal states through neural circuits. Identifying neural substrates and their molecular modulators promoting or inhibiting animal behaviors are key steps to understand how neural circuits control behaviors. Here, we identify the Cholecystokinin-like peptide Drosulfakinin (DSK) that functions at single-neuron resolution to suppress male sexual behavior in Drosophila. We found that Dsk neurons physiologically interact with male-specific P1 neurons, part of a command center for male sexual behaviors, and function oppositely to regulate multiple arousal-related behaviors including sex, sleep and spontaneous walking. We further found that the DSK-2 peptide functions through its receptor CCKLR-17D3 to suppress sexual behaviors in flies. Such a neuropeptide circuit largely overlaps with the fruitless-expressing neural circuit that governs most aspects of male sexual behaviors. Thus DSK/CCKLR signaling in the sex circuitry functions antagonistically with P1 neurons to balance arousal levels and modulate sexual behaviors.


2020 ◽  
Vol 21 (5) ◽  
pp. 1645 ◽  
Author(s):  
Madhulika Tripathi ◽  
Paul Michael Yen ◽  
Brijesh Kumar Singh

The estrogen-related receptor alpha (ESRRA) is an orphan nuclear receptor (NR) that significantly influences cellular metabolism. ESRRA is predominantly expressed in metabolically-active tissues and regulates the transcription of metabolic genes, including those involved in mitochondrial turnover and autophagy. Although ESRRA activity is well-characterized in several types of cancer, recent reports suggest that it also has an important role in metabolic diseases. This minireview focuses on the regulation of cellular metabolism and function by ESRRA and its potential as a target for the treatment of metabolic disorders.


Author(s):  
Yong‐Soo Lee ◽  
Dipanjan Chanda ◽  
Jeonggu Sim ◽  
Yun‐Yong Park ◽  
Hueng‐Sik Choi

2014 ◽  
Vol 28 (6) ◽  
pp. 886-898 ◽  
Author(s):  
Caroline Daems ◽  
Luc J. Martin ◽  
Catherine Brousseau ◽  
Jacques J. Tremblay

Abstract Leydig cell steroidogenesis is controlled by the pituitary gonadotropin LH that activates several signaling pathways, including the Ca2+/calmodulin kinase I (CAMKI) pathway. In other tissues, CAMKI regulates the activity of the myocyte enhancer factor 2 (MEF2) transcription factors. MEF2 factors are essential regulators of cell differentiation and organogenesis in numerous tissues but their expression and role in the mammalian gonad had not been explored. Here we show that MEF2 factors are expressed in a sexually dimorphic pattern in the mouse gonad. MEF2 factors are present in the testis throughout development and into adulthood but absent from the ovary. In the testis, MEF2 was localized mainly in the nucleus of both somatic lineages, the supporting Sertoli cells and the steroidogenic Leydig cells. In Leydig cells, MEF2 was found to activate the expression of Nr4a1, a nuclear receptor important for hormone-induced steroidogenesis. In these cells MEF2 also cooperates with forskolin and CAMKI to enhance Nr4a1 promoter activity via two MEF2 elements (−318 and −284 bp). EMSA confirmed direct binding of MEF2 to these elements whereas chromatin immunoprecipitation revealed that MEF2 recruitment to the proximal Nr4a1 promoter was increased following hormonal stimulation. Modulation of endogenous MEF2 protein level (small interfering RNA-mediated knockdown) or MEF2 activity (MEF2-Engrailed active dominant negative) led to a significant decrease in Nr4a1 mRNA levels in Leydig cells. All together, our results identify MEF2 as a novel testis-specific transcription factor, supporting a role for this factor in male sex differentiation and function. MEF2 was also positioned upstream of NR4A1 in a regulatory cascade controlling Leydig cell gene expression.


Development ◽  
1997 ◽  
Vol 124 (9) ◽  
pp. 1799-1807
Author(s):  
G. Giuili ◽  
W.H. Shen ◽  
H.A. Ingraham

Mullerian Inhibiting Substance (MIS) functions to promote regression of the Mullerian duct during male development. Maintaining the sexually dimorphic pattern of MIS expression is essential for proper mammalian reproductive tract development. Here, we show that the intricate spatial and temporal pattern of MIS expression is directed by a remarkably small proximal promoter of only 180 base pairs in length. Expression of the MIS-human growth hormone transgene (MIS/GH) is restricted to Sertoli cells in embryonic testis and to granulosa cells of postnatal ovary, consistent with the known MIS expression pattern. The proximal MIS promoter is therefore sufficient to direct the initiation and the maintenance of MIS gene expression in both sexes. Moreover, in vivo MIS promoter activity requires an intact binding site for the orphan nuclear receptor SF-1. Taken together, these data strongly suggest that SF-1 directly activates MIS in embryonic and postnatal gonads. Consistent with the proposed role of SF-1 in mammalian sex-determination, our study provides physiological evidence that a SF-1 binding site is essential for gene activation of an embryonic testis-specific marker.


Genetics ◽  
1985 ◽  
Vol 111 (1) ◽  
pp. 89-96
Author(s):  
Scott P McRobert ◽  
Laurie Tompkins

ABSTRACT We have identified the effects of genes that regulate sex determination on female-specific tissues in the abdomen that produce sex pheromones and parts of the central nervous system that function when a male performs courtship. To do this, we monitored the sexual behaviors of flies with mutations in the transformer (tra), doublesex (dsx) and intersex (ix) genes. Except for tra, which transforms diplo-X flies so that they look and function like normal males, these mutations do not have the same effect on pheromone-producing tissues and the central nervous system as they do on the appearance of the fly. The dsx and ix mutations, which make diplo-X-flies look like intersexes, do not transform the flies so that they can perform courtship, suggesting that these genes do not regulate the development of sex-specific parts of the central nervous system. Conversely, the ix mutation, which has no effect on the appearance of haplo-X flies, makes the flies sexually attractive and impairs their ability to perform courtship, which implies that the ix gene is active in internal tissues of males.


Sign in / Sign up

Export Citation Format

Share Document