scholarly journals Early Reduction of SARS-CoV-2 Replication in Bronchial Epithelium by Kinin B2 Receptor Antagonism

Author(s):  
Constanze A. Jakwerth ◽  
Martin Feuerherd ◽  
Ferdinand M. Guerth ◽  
Madlen Oelsner ◽  
Linda Schellhammer ◽  
...  

Background: SARS-CoV2 has evolved to enter the host via the ACE2 receptor which is part of the Kinin-kallirein pathway. This complex pathway is only poorly understood in context of immune regulation but critical to control infection. This study examines SARS-CoV2 infection and epithelial mechanisms of the kinin-kallikrein system at the kinin B2 receptor level in SARS-CoV-2 infection that is of direct translational relevance. Methods: From acute SARS-CoV-2-positive patients and -negative controls, transcriptomes of nasal brushings were analyzed. Primary airway epithelial cells (NHBEs) were infected with SARS-CoV-2 and treated with the approved B2R antagonist icatibant. SARS-CoV-2 RNA RT-qPCR, cytotoxicity assays, plaque assays and transcriptome analyses were performed. The treatment effect was further studied in a murine airway inflammation model in vivo. Results: Here, we report a broad and strong upregulation of kallikreins and the kinin B2 receptor (B2R) in the nasal mucosa of acutely symptomatic SARS-CoV-2-positive patients. A B2R antagonist impeded SARS-CoV-2 replication and spread in NHBEs, as determined in plaque assays on Vero E6 cells. B2R antagonism reduced the expression of SARS-CoV-2 entry receptor ACE2 in vitro and in a murine airway inflammation model in vivo. In addition, it suppressed gene expression broadly, particularly genes involved in G-protein-coupled-receptor signaling and ion transport. Conclusions: In summary, this study provides evidence that treatment with B2R antagonists protects airway epithelial cells from SARS-CoV-2 by inhibiting its replication and spread, through the reduction of ACE2 levels and the interference with several cellular signaling processes. Future clinical studies need to shed light on the airway protection potential of approved B2R antagonists, like icatibant, in the treatment of early-stage COVID-19.

2021 ◽  
pp. 194589242110276
Author(s):  
Shiori Hara ◽  
Ichiro Tojima ◽  
Shino Shimizu ◽  
Hideaki Kouzaki ◽  
Takeshi Shimizu

Background 17,18-Epoxyeicosatetraenoic acid (17,18-EpETE), an eicosapentaenoic acid metabolite, is generated from dietary oil in the gut, and antiinflammatory activity of 17,18-EpETE was recently reported. Objective To evaluate the inhibitory effects of 17,18-EpETE in airway inflammation, we examined in vitro and in vivo effects on mucus production, neutrophil infiltration, and cytokine/chemokine production in airway epithelium. Methods Nasal tissue localization of G protein-coupled receptor 40 (GPR40), a receptor of 17,18-EpETE, was determined by immunohistochemical staining. Expression of GPR40 mRNA in nasal mucosa of chronic rhinosinusitis (CRS) patients and control subjects was determined by reverse transcription-polymerase chain reaction (RT-PCR). The in vitro effects on airway epithelial cells were examined using normal human bronchial epithelial cells and NCI-H292 cells. To examine the in vivo effects of 17,18-EpETE on airway inflammation, we induced goblet cell metaplasia, mucus production, and neutrophil infiltration in mouse nasal epithelium by intranasal lipopolysaccharide (LPS) instillation. Results GPR40 is mainly expressed in human nasal epithelial cells and submucosal gland cells. RT-PCR analysis revealed that the expression of GPR40 mRNA was increased in nasal tissues from CRS patients compared with those from control subjects. 17,18-EpETE significantly inhibited tumor necrosis factor (TNF)-α-induced production of interleukin (IL)-6 , IL-8, and mucin from cultured human airway epithelial cells dose dependently, and these antiinflammatory effects on cytokine production were abolished by GW1100, a selective GPR40 antagonist. Intraperitoneal injection or intranasal instillation of 17,18-EpETE significantly attenuated LPS-induced mucus production and neutrophil infiltration in mouse nasal epithelium. Inflammatory cytokine/chemokine production in lung tissues and bronchoalveolar lavage fluids was also inhibited. Conclusion These results indicate that 17,18-EpETE plays a regulatory role in mucus hypersecretion and neutrophil infiltration in nasal inflammation. Local or systemic administration may provide a new therapeutic approach for the treatment of intractable airway disease such as CRS.


2002 ◽  
Vol 282 (1) ◽  
pp. L155-L165 ◽  
Author(s):  
Mark W. Frampton ◽  
Joseph Boscia ◽  
Norbert J. Roberts ◽  
Mitra Azadniv ◽  
Alfonso Torres ◽  
...  

This study examined the effects of nitrogen dioxide (NO2) exposure on airway inflammation, blood cells, and antiviral respiratory defense. Twenty-one healthy volunteers were exposed on separate occasions to air and 0.6 and 1.5 ppm NO2for 3 h with intermittent moderate exercise. Phlebotomy and bronchoscopy were performed 3.5 h after each exposure, and recovered cells were challenged with respiratory viruses in vitro. Blood studies revealed a 4.1% NO2dose-related decrease in hematocrit ( P = 0.003). Circulating total lymphocytes ( P = 0.024) and T lymphocytes ( P = 0.049) decreased with NO2exposure. Exposure to NO2increased the blood lymphocyte CD4+-to-CD8+ratio from 1.74 ± 0.11 to 1.85 ± 0.12 in males but decreased it from 1.88 ± 0.19 to 1.78 ± 0.19 in females ( P < 0.001 for gender difference). Polymorphonuclear leukocytes in bronchial lavage increased with NO2exposure ( P = 0.003). Bronchial epithelial cells obtained after exposure to 1.5 ppm NO2released 40% more lactate dehydrogenase after challenge with respiratory syncytial virus than with air exposure ( P = 0.024). In healthy subjects, exposures to NO2at levels found indoors cause mild airway inflammation, effects on blood cells, and increased susceptibility of airway epithelial cells to injury from respiratory viruses.


2008 ◽  
Vol 295 (2) ◽  
pp. L303-L313 ◽  
Author(s):  
Aura Perez ◽  
Anna M. van Heeckeren ◽  
David Nichols ◽  
Sanhita Gupta ◽  
Jean F. Eastman ◽  
...  

The pathophysiology of cystic fibrosis (CF) inflammatory lung disease is not well understood. CF airway epithelial cells respond to inflammatory stimuli with increased production of proinflammatory cytokines as a result of increased NF-κB activation. Peroxisome proliferator-activated receptor-γ (PPARγ) inhibits NF-κB activity and is reported to be reduced in CF. If PPARγ participates in regulatory dysfunction in the CF lung, perhaps PPARγ ligands might be useful therapeutically. Cell models of CF airway epithelium were used to evaluate PPARγ expression and binding to NF-κB at basal and under conditions of inflammatory stimulation by Pseudomonas aeruginosa or TNFα/IL-1β. An animal model of CF was used to evaluate the potential of PPARγ agonists as therapeutic agents in vivo. In vitro, PPARγ agonists reduced IL-8 and MMP-9 release from airway epithelial cells in response to PAO1 or TNFα/IL-1β stimulation. Less NF-κB bound to PPARγ in CF than normal cells, in two different assays; PPARγ agonists abrogated this reduction. PPARγ bound less to its target DNA sequence in CF cells. To test the importance of the reported PPARγ inactivation by phosphorylation, we observed that inhibitors of ERK, but not JNK, were synergistic with PPARγ agonists in reducing IL-8 secretion. In vivo, administration of PPARγ agonists reduced airway inflammation in response to acute infection with P. aeruginosa in CF, but not wild-type, mice. In summary, PPARγ inhibits the inflammatory response in CF, at least in part by interaction with NF-κB in airway epithelial cells. PPARγ agonists may be therapeutic in CF.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1248
Author(s):  
Alan J. Hibbitts ◽  
Joanne M. Ramsey ◽  
James Barlow ◽  
Ronan MacLoughlin ◽  
Sally-Ann Cryan

Inhalation offers a means of rapid, local delivery of siRNA to treat a range of autoimmune or inflammatory respiratory conditions. This work investigated the potential of a linear 10 kDa Poly(ethylene glycol) (PEG)-modified 25 kDa branched polyethyleneimine (PEI) (PEI-LPEG) to effectively deliver siRNA to airway epithelial cells. Following optimization with anti- glyceraldehyde 3-phosphate dehydrogenase (GAPDH) siRNA, PEI and PEI-LPEG anti-IL8 siRNA nanoparticles were assessed for efficacy using polarised Calu-3 human airway epithelial cells and a twin stage impinger (TSI) in vitro lung model. Studies were then advanced to an in vivo lipopolysaccharide (LPS)-stimulated rodent model of inflammation. In parallel, the suitability of the siRNA-loaded nanoparticles for nebulization using a vibrating mesh nebuliser was assessed. The siRNA nanoparticles were nebulised using an Aerogen® Pro vibrating mesh nebuliser and characterised for aerosol output, droplet size and fine particle fraction. Only PEI anti-IL8 siRNA nanoparticles were capable of significant levels of IL-8 knockdown in vitro in non-nebulised samples. However, on nebulization through a TSI, only PEI-PEG siRNA nanoparticles demonstrated significant decreases in gene and protein expression in polarised Calu-3 cells. In vivo, both anti-CXCL-1 (rat IL-8 homologue) nanoparticles demonstrated a decreased CXCL-1 gene expression in lung tissue, but this was non-significant. However, PEI anti-CXCL-1 siRNA-treated rats were found to have significantly less infiltrating macrophages in their bronchoalveolar lavage (BAL) fluid. Overall, the in vivo gene and protein inhibition findings indicated a result more reminiscent of the in vitro bolus delivery rather than the in vitro nebulization data. This work demonstrates the potential of nebulised PEI-PEG siRNA nanoparticles in modulating pulmonary inflammation and highlights the need to move towards more relevant in vitro and in vivo models for respiratory drug development.


2001 ◽  
Vol 193 (3) ◽  
pp. 339-352 ◽  
Author(s):  
Michael J. Walter ◽  
Naohiro Kajiwara ◽  
Peter Karanja ◽  
Mario Castro ◽  
Michael J. Holtzman

Human airway epithelial cells appear specially programmed for expression of immune response genes implicated in immunity and inflammation. To better determine how this epithelial system operates in vivo, we analyzed its behavior in mouse models that allow for in vitro versus in vivo comparison and genetic modification. Initial comparisons indicated that tumor necrosis factor α induction of epithelial intercellular adhesion molecule 1 required sequential induction of interleukin (IL)-12 (p70) and interferon γ, and unexpectedly localized IL-12 production to airway epithelial cells. Epithelial IL-12 was also inducible during paramyxoviral bronchitis, but in this case, initial IL-12 p70 expression was followed by 75-fold greater expression of IL-12 p40 (as monomer and homodimer). Induction of IL-12 p40 was even further increased in IL-12 p35-deficient mice, and in this case, was associated with increased mortality and epithelial macrophage accumulation. The results placed epithelial cell overgeneration of IL-12 p40 as a key intermediate for virus-inducible inflammation and a candidate for epithelial immune response genes that are abnormally programmed in inflammatory disease. This possibility was further supported when we observed IL-12 p40 overexpression selectively in airway epithelial cells in subjects with asthma and concomitant increases in airway levels of IL-12 p40 (as homodimer) and airway macrophages. Taken together, these results suggest a novel role for epithelial-derived IL-12 p40 in modifying the level of airway inflammation during mucosal defense and disease.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Ju-Hyun Gong ◽  
Daekeun Shin ◽  
Seon-Young Han ◽  
Sin-Hye Park ◽  
Min-Kyung Kang ◽  
...  

Asthma is characterized by bronchial inflammation causing increased airway hyperresponsiveness and eosinophilia. The interaction between airway epithelium and inflammatory mediators plays a key role in the asthmatic pathogenesis. Thein vitrostudy elucidated inhibitory effects of kaempferol, a flavonoid found in apples and many berries, on inflammation in human airway epithelial BEAS-2B cells. Nontoxic kaempferol at ≤20 μM suppressed the LPS-induced IL-8 production through the TLR4 activation, inhibiting eotaxin-1 induction. Thein vivostudy explored the demoting effects of kaempferol on asthmatic inflammation in BALB/c mice sensitized with ovalbumin (OVA). Mouse macrophage inflammatory protein-2 production and CXCR2 expression were upregulated in OVA-challenged mice, which was attenuated by oral administration of ≥10 mg/kg kaempferol. Kaempferol allayed the airway tissue levels of eotaxin-1 and eotaxin receptor CCR3 enhanced by OVA challenge. This study further explored the blockade of Tyk-STAT signaling by kaempferol in both LPS-stimulated BEAS-2B cells and OVA-challenged mice. LPS activated Tyk2 responsible for eotaxin-1 induction, while kaempferol dose-dependently inhibited LPS- or IL-8-inflamed Tyk2 activation. Similar inhibition of Tyk2 activation by kaempferol was observed in OVA-induced mice. Additionally, LPS stimulated the activation of STAT1/3 signaling concomitant with downregulated expression of Tyk-inhibiting SOCS3. In contrast, kaempferol encumbered STAT1/3 signaling with restoration of SOCS3 expression. Consistently, oral administration of kaempferol blocked STAT3 transactivation elevated by OVA challenge. These results demonstrate that kaempferol alleviated airway inflammation through modulating Tyk2-STAT1/3 signaling responsive to IL-8 in endotoxin-exposed airway epithelium and in asthmatic mice. Therefore, kaempferol may be a therapeutic agent targeting asthmatic diseases.


2013 ◽  
Vol 304 (8) ◽  
pp. L511-L518 ◽  
Author(s):  
Shijing Fang ◽  
Anne L. Crews ◽  
Wei Chen ◽  
Joungjoa Park ◽  
Qi Yin ◽  
...  

Myristoylated alanine-rich C kinase substrate (MARCKS) protein has been recognized as a key regulatory molecule controlling mucin secretion by airway epithelial cells in vitro and in vivo. We recently showed that two intracellular chaperones, heat shock protein 70 (HSP70) and cysteine string protein (CSP), associate with MARCKS in the secretory mechanism. To elucidate more fully MARCKS-HSP70 interactions in this process, studies were performed in well-differentiated normal human bronchial epithelial (NHBE) cells maintained in air-liquid interface culture utilizing specific pharmacological inhibition of HSP70 with pyrimidinone MAL3-101 and siRNA approaches. The results indicate that HSP70 interaction with MARCKS is enhanced after exposure of the cells to the protein kinase C activator/mucin secretagogue, phorbol 12-myristate 13-acetate (PMA). Pretreatment of NHBEs with MAL3-101 attenuated in a concentration-dependent manner PMA-stimulated mucin secretion and interactions among HSP70, MARCKS, and CSP. In additional studies, trafficking of MARCKS in living NHBE cells was investigated after transfecting cells with fluorescently tagged DNA constructs: MARCKS-yellow fluorescent protein, and/or HSP70-cyan fluorescent protein. Cells were treated with PMA 48 h posttransfection, and trafficking of the constructs was examined by confocal microscopy. MARCKS translocated rapidly from plasma membrane to cytoplasm, whereas HSP70 was observed in the cytoplasm and appeared to associate with MARCKS after PMA exposure. Pretreatment of cells with either MAL3-101 or HSP70 siRNA inhibited translocation of MARCKS. These results provide evidence of a role for HSP70 in mediating mucin secretion via interactions with MARCKS and that these interactions are critical for the cytoplasmic translocation of MARCKS upon its phosphorylation.


Sign in / Sign up

Export Citation Format

Share Document