scholarly journals Comparative secretomics identifies conserved WAxR motif-containing effectors in rust fungi that suppress cell death in plants

2021 ◽  
Author(s):  
Rajdeep Jaswal ◽  
Himanshu Dubey ◽  
Kanti Kiran ◽  
Hukam Rawal ◽  
Sivasubramanian Rajarammohan ◽  
...  

Identification of novel effectors with conserved features has always remained a challenge in plant-pathogen interaction studies. The introduction of the genomics era in plant-pathogen studies has led to the identification of significant candidate effectors with novel motifs such as RxLR and dEER motifs. However, in the case of fungal pathogens, limited conserved motifs associated with effectors have been discovered yet. In the present study, we have performed comparative secretome analysis for major plant pathogens of diverse nutrition mechanisms with the aim of dissecting the features underlying their corresponding secretome and conserved motifs. We showed that rust fungi possess the lowest Cell wall degrading enzymes (CWDEs) consortium lower than other biotrophic pathogens. We also showed rust fungi possess the highest secretory superoxide dismutase (SOD) than other studied plant pathogens. Further, we prioritized the candidate secretory effectors proteins (CSEPs) of all the studied pathogens by combining various effector mining parameters to highlight the candidates with potential effector features. A novel WAxR motif in conjugation with the Y/F/WxC (FGC) motif was identified in the effectors of various P. striiformis races present globally. The WAxR/WAxR like motifs ( WxxR, WAxx, xAxR) containing effectors were also found in the secretome of other rust fungi. Further, the functional validation of two candidate effectors with WAxR motif from P. striiformis Yr9 showed that these effectors localize to the nucleus as well as cytoplasm, and are able to suppress BAX induced cell death in Nicotiana benthamiana. The mutation analysis of individual residues of the WAxR motif (W, A, R ) however did not affect the cell death suppression nor subcellular localization of these effectors. Overall, the current study reports the presence of novel motifs in large numbers of effectors of rust fungi with cell death suppression features.

2020 ◽  
Author(s):  
Tanja Jeblick ◽  
Thomas Leisen ◽  
Christina E. Steidele ◽  
Jonas Müller ◽  
Florian Mahler ◽  
...  

AbstractAccording to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. While biotrophic pathogens establish a relationship with living host cells, necrotrophic pathogens rapidly kill host cells and feed on the cell debris. To this end, the necrotrophic ascomycete fungusBotrytis cinereasecretes large amounts of phytotoxic proteins and cell wall degrading enzymes. However, the precise role of these proteins during the infection process is unknown. Here we report on the identification and characterization of the previously unknown toxic protein hypersensitive response inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a folded protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity inNicotiana benthamiana. Localization and the induction of specific plant responses by Hip1 indicate recognition as pathogen-associated molecular pattern at the plant plasma membrane. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or poreforming activity, induces strong plant defense reactions eventually leading to plant cell death.


2021 ◽  
Author(s):  
Rajdeep Jaswal ◽  
Sivasubramanian Rajarammohan ◽  
Himanshu Dubey ◽  
Kanti Kiran ◽  
Hukam Rawal ◽  
...  

The effector proteins expressed by plant pathogens are one of the essential components of the host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the lack of conserved features and huge diversity in their primary sequence. In the present study, extensive secretome analysis was performed in sixteen major plant fungal pathogens to find the conserved features in the candidate secretory effector proteins (CSEPs) using homology and ab initio modeling approaches. Interestingly, a variable number of plant kiwellin proteins fold like secretory proteins were found in all the major rust fungal pathogens. Many of them are predicted as potential effector proteins. For instance, 26 out of 35 Kiwellin like proteins identified in Puccinia striiformis race 104E 137A were predicted as potential effector proteins. In addition, a kiwellin predicted effector gene, Pst_13960, from the Indian Puccinia striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pst_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the kiwellin fold in rust fungi. Further analysis of these proteins predicted these candidates to contain N-terminal Intrinsically disordered regions (IDRs) putatively associated with chloroplast translocation as deletion of region abolished the chloroplast localization of Pstr_13960. Overall, the current study reports the presence of kiwellin like proteins in rust fungi that act as a novel effector in plants.


Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1406
Author(s):  
Clemence Marchal ◽  
Georg Haberer ◽  
Manuel Spannagl ◽  
Cristobal Uauy ◽  

Nucleotide-binding leucine-rich-repeat (LRR) receptors (NLRs) with non-canonical integrated domains (NLR-IDs) are widespread in plant genomes. Zinc-finger BED (named after the Drosophila proteins Boundary Element-Associated Factor and DNA Replication-related Element binding Factor, named BED hereafter) are among the most frequently found IDs. Five BED-NLRs conferring resistance against bacterial and fungal pathogens have been characterized. However, it is unknown whether BED-NLRs function in a manner similar to other NLR-IDs. Here, we used chromosome-level assemblies of wheat to explore the Yr7 and Yr5a genomic regions and show that, unlike known NLR-ID loci, there is no evidence for a NLR-partner in their vicinity. Using neighbor-network analyses, we observed that BED domains from BED-NLRs share more similarities with BED domains from single-BED proteins and from BED-containing proteins harboring domains that are conserved in transposases. We identified a nuclear localization signal (NLS) in Yr7, Yr5, and the other characterized BED-NLRs. We thus propose that this is a feature of BED-NLRs that confer resistance to plant pathogens. We show that the NLS was functional in truncated versions of the Yr7 protein when expressed in N. benthamiana. We did not observe cell-death upon the overexpression of Yr7 full-length, truncated, and ‘MHD’ variants in N. benthamiana. This suggests that either this system is not suitable to study BED-NLR signaling or that BED-NLRs require additional components to trigger cell death. These results define novel future directions to further understand the role of BED domains in BED-NLR mediated resistance.


2007 ◽  
Vol 73 (16) ◽  
pp. 5162-5172 ◽  
Author(s):  
Wei-Jen Chen ◽  
François Delmotte ◽  
Sylvie Richard Cervera ◽  
Lisette Douence ◽  
Charles Greif ◽  
...  

ABSTRACT Quinone outside inhibiting (QoI) fungicides represent one of the most widely used groups of fungicides used to control agriculturally important fungal pathogens. They inhibit the cytochrome bc 1 complex of mitochondrial respiration. Soon after their introduction onto the market in 1996, QoI fungicide-resistant isolates were detected in field plant pathogen populations of a large range of species. However, there is still little understanding of the processes driving the development of QoI fungicide resistance in plant pathogens. In particular, it is unknown whether fungicide resistance occurs independently in isolated populations or if it appears once and then spreads globally by migration. Here, we provide the first case study of the evolutionary processes that lead to the emergence of QoI fungicide resistance in the plant pathogen Plasmopara viticola. Sequence analysis of the complete cytochrome b gene showed that all resistant isolates carried a mutation resulting in the replacement of glycine by alanine at codon 143 (G143A). Phylogenetic analysis of a large mitochondrial DNA fragment including the cytochrome b gene (2,281 bp) across a wide range of European P. viticola isolates allowed the detection of four major haplotypes belonging to two distinct clades, each of which contains a different QoI fungicide resistance allele. This is the first demonstration that a selected substitution conferring resistance to a fungicide has occurred several times in a plant-pathogen system. Finally, a high population structure was found when the frequency of QoI fungicide resistance haplotypes was assessed in 17 French vineyards, indicating that pathogen populations might be under strong directional selection for local adaptation to fungicide pressure.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ya Li ◽  
Yijuan Han ◽  
Mengyu Qu ◽  
Jia Chen ◽  
Xiaofeng Chen ◽  
...  

2020 ◽  
Author(s):  
Karen Cristine Goncalves dos Santos ◽  
Gervais Pelletier ◽  
Armand Séguin ◽  
François Guillemette ◽  
Jeffrey Hawkes ◽  
...  

AbstractRust fungi are plant pathogens that cause epidemics that threaten the production of important plant species, such as wheat, soy, coffee and poplar. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1 184 candidate effectors (CEs), however their functions are poorly known. In this study, we used Arabidopsis plants constitutively expressing CEs of Mlp to discover processes targeted by these fungal proteins. For this purpose, we sequenced the transcriptome and used mass spectrometry to analyse the metabolome of Arabidopsis plants expressing individually one of the 14 selected CEs and of a control line. We found 2 299 deregulated genes across the experiment. Among the down-regulated genes, the KEGG pathways “MAPK signaling pathway” and “Plant-pathogen interaction” were respectively over-represented in six and five of the 14 transgenic lines. Moreover, genes related to hormone response and defense were down-regulated across all transgenic lines are. We further observed that there were 680 metabolites deregulated in at least one CE-expressing transgenic line, with highly unsaturated and phenolic compounds enriched in up-regulated metabolites and peptides enriched among down-regulated metabolites. Interestingly, we found that transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Taken together, our results indicate that the sequence of effectors and their belonging to families may not be a good predictor of their impact on the plant.ImportanceRust fungi are plant pathogens that threaten the production of important crops, including wheat, soy, coffee and poplar. Effectors are used by pathogens to control the host, however in the case of Melampsora larici-populina, the causal agent of the poplar rust, and other rust fungi these proteins are poorly known. We used Arabidopsis plants expressing candidate effectors (CEs) of Mlp to better understand the interaction between this pathogen and its hosts. We found that expression of unrelated CEs led to similar patterns of gene and metabolite deregulation, while transgenic lines expressing CEs belonging to the same family showed different groups of different genes and metabolites deregulated. Thus, our results suggest that functional annotation of effectors based on sequence similarity may be misleading.


2019 ◽  
Vol 109 (8) ◽  
pp. 1324-1330 ◽  
Author(s):  
E. Kosman ◽  
X. Chen ◽  
A. Dreiseitl ◽  
B. McCallum ◽  
A. Lebeda ◽  
...  

Classical virulence analysis is based on discovering virulence phenotypes of isolates with regard to a composition of resistance genes in a differential set of host genotypes. With such a vision, virulence phenotypes are usually treated in a genetic manner as one of two possible alleles, either virulence or avirulence in a binary locus. Therefore, population genetics metrics and methods have become prevailing tools for analyzing virulence data at multiple loci. However, a basis for resolving binary virulence phenotypes is infection type (IT) data of host–pathogen interaction that express functional traits of each specific isolate in a given situation (particular host, environmental conditions, cultivation practice, and so on). IT is determined by symptoms and signs observed (e.g., lesion type, lesion size, coverage of leaf or leaf segments by mycelium, spore production and so on), and assessed by IT scores at a generally accepted scale for each plant–pathogen system. Thus, multiple IT profiles of isolates are obtained and can be subjected to analysis of functional variation within and among operational units of a pathogen. Such an approach may allow better utilization of the information available in the raw data, and reveal a functional (e.g., environmental) component of pathogen variation in addition to the genetic one. New methods for measuring functional variation of plant–pathogen interaction with IT data were developed. The methods need an appropriate assessment scale and expert estimations of dissimilarity between IT scores for each plant–pathogen system (an example is presented). Analyses of a few data sets at different hierarchical levels demonstrated discrepancies in results obtained with IT phenotypes versus binary virulence phenotypes. The ability to measure functional IT-based variation offers promise as an effective tool in the study of epidemics caused by plant pathogens.


2010 ◽  
Vol 23 (2) ◽  
pp. 139-143 ◽  
Author(s):  
Meriam Terta ◽  
Mohamed Kettani-Halabi ◽  
Khadija Ibenyassine ◽  
Daniel Tran ◽  
Patrice Meimoun ◽  
...  

Pectobacterium carotovorum are economically important plant pathogens that cause plant soft rot. These enterobacteria display high diversity world-wide. Their pathogenesis depends on production and secretion of virulence factors such as plant cell wall–degrading enzymes, type III effectors, a necrosis-inducing protein, and a secreted virulence factor from Xanthomonas spp., which are tightly regulated by quorum sensing. Pectobacterium carotovorum also present pathogen-associated molecular patterns that could participate in their pathogenicity. In this study, by using suspension cells of Arabidopsis thaliana, we correlate plant cell death and pectate lyase activities during coinfection with different P. carotovorum strains. When comparing soft rot symptoms induced on potato slices with pectate lyase activities and plant cell death observed during coculture with Arabidopsis thaliana cells, the order of strain virulence was found to be the same. Therefore, Arabidopsis thaliana cells could be an alternative tool to evaluate rapidly and efficiently the virulence of different P. carotovorum strains.


2022 ◽  
Vol 23 (1) ◽  
pp. 508
Author(s):  
Jinlong Zhang ◽  
Mingxia Zhou ◽  
Wei Liu ◽  
Jiajun Nie ◽  
Lili Huang

Kiwifruit canker, caused by Pseudomonas syringae pv. actinidiae (Psa), is a destructive pathogen that globally threatens the kiwifruit industry. Understanding the molecular mechanism of plant-pathogen interaction can accelerate applying resistance breeding and controlling plant diseases. All known effectors secreted by pathogens play an important role in plant-pathogen interaction. However, the effectors in Psa and their function mechanism remain largely unclear. Here, we successfully identified a T3SS effector HopAU1 which had no virulence contribution to Psa, but could, however, induce cell death and activate a series of immune responses by agroinfiltration in Nicotiana benthamiana, including elevated transcripts of immune-related genes, accumulation of reactive oxygen species (ROS), and callose deposition. We found that HopAU1 interacted with a calcium sensing receptor in N. benthamiana (NbCaS) as well as its close homologue in kiwifruit (AcCaS). More importantly, silencing CaS by RNAi in N. benthamiana greatly attenuated HopAU1-triggered cell death, suggesting CaS is a crucial component for HopAU1 detection. Further researches showed that overexpression of NbCaS in N. benthamiana significantly enhanced plant resistance against Sclerotinia sclerotiorum and Phytophthora capsici, indicating that CaS serves as a promising resistance-related gene for disease resistance breeding. We concluded that HopAU1 is an immune elicitor that targets CaS to trigger plant immunity.


2021 ◽  
Author(s):  
Richard Breia ◽  
Artur Conde ◽  
Hélder Badim ◽  
Ana Margarida Fortes ◽  
Hernâni Gerós ◽  
...  

Abstract Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant–pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant–pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant–pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.


Sign in / Sign up

Export Citation Format

Share Document