scholarly journals Evolutionary dynamics of a virus in a vaccinated population

Author(s):  
Graham Bell

The progress of an epidemic in a small closed community is simulated by an agent-based model which allows vaccination and variation. The attributes of the virus are governed by two genetic loci: the P-locus, which determines growth, and the M-locus, which determines immune characteristics. Mutation at either locus modifies the attributes of the virus and leads to evolution through natural selection. For both loci the crucial variable is the potential mutation supply UPot, because evolution is likely to happen when UPot > 1. Mutation at the P-locus causes a limited increase in virulence, which may be affected by vaccine design. Mutation at the M-locus may cause a qualitative shift of dynamic regime from a simple limited epidemic to a perennial endemic disease by giving rise to escape mutants which may themselves mutate. A broad vaccine that remains efficacious despite several mutations at the M-locus prevents this shift and provides protection despite the evolution of the virus. Escape variants may nevertheless arise through recombination after coinfection, and can be suppressed by timely revaccination, using the prevalent strain to design the vaccine.

2013 ◽  
Vol 50 ◽  
Author(s):  
Hugh Crozier Murrell ◽  
John Henry Swart

A generalized Verhulst model subject to seasonal change in both fertility rate and carrying capacity is outlined. Numerical solutions to the Verhulst equations are employed to obtain optimal fertility rate phase shift with respect to carrying capacity. Possible natural selection for a preferred season of conception is investigated using agent based simulations. Both experiments indicate that synchronization of fertility rate to environment carrying capacity is beneficial to species survival.


Author(s):  
Aaron M. Ellison ◽  
Lubomír Adamec

The material presented in the chapters of Carnivorous Plants: Physiology, Ecology, and Evolution together provide a suite of common themes that could provide a framework for increasing progress in understanding carnivorous plants. All speciose genera would benefit from more robust, intra-generic classifications in a phylogenetic framework that uses a unified species concept. As more genomic, proteomic, and transcriptomic data accrue, new insights will emerge regarding trap biochemistry and regulation; interactions with commensals; and the importance of intraspecific variability on which natural selection works. Continued elaboration of field experiments will provide new insights into basic physiology; population biology; plant-animal and plant-microbe relationships; and evolutionary dynamics, all of which will aid conservation efforts and contribute to discussions of assisted migration as the climate continues to change.


2006 ◽  
Vol 35 ◽  
pp. 247-250
Author(s):  
H. Randle ◽  
E. Elworthy

The influence of Natural Selection on the evolution of the horse (Equus callabus) is minimal due to its close association with humans. Instead Artificial Selection is commonly imposed through selection for features such as a ‘breed standard’ or competitive ability. It has long been considered to be useful if indicators of characteristics such as physical ability could be identified. Kidd (1902) suggested that the hair coverings of animals were closely related to their lifestyle, whether they were active or passive. In 1973 Smith and Gong concluded that hair whorl (trichloglyph) pattern and human behaviour is linked since hair patterning is determined at the same time as the brain develops in the foetus. More recently Grandin et al. (1995), Randle (1998) and Lanier et al. (2001) linked features of facial hair whorls to behaviour and production in cattle. Hair whorl features have also been related to temperament in equines (Randle et al., 2003).


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1147
Author(s):  
Javier Falgueras-Cano ◽  
Juan-Antonio Falgueras-Cano ◽  
Andrés Moya

This paper presents an Evolutionary Cellular Automaton (ECA) that simulates the evolutionary dynamics of biological interactions by manipulating strategies of dispersion and associations between digital organisms. The parameterization of the different types of interaction and distribution strategies using configuration files generates easily interpretable results. In that respect, ECA is an effective instrument for measuring the effects of relative adaptive advantages and a good resource for studying natural selection. Although ECA works effectively in obtaining the expected results from most well-known biological interactions, some unexpected effects were observed. For example, organisms uniformly distributed in fragmented habitats do not favor eusociality, and mutualism evolved from parasitism simply by varying phenotypic flexibility. Finally, we have verified that natural selection represents a cost for the emergence of sex by destabilizing the stable evolutionary strategy of the 1:1 sex ratio after generating randomly different distributions in each generation.


2016 ◽  
Author(s):  
Ken A. Thompson ◽  
Kaitlin A. Cory ◽  
Marc T. J. Johnson

AbstractEvolutionary biologists have long sought to understand the ecological processes that generate plant reproductive diversity. Recent evidence indicates that constitutive antiherbivore defenses can alter natural selection on reproductive traits, but it is unclear whether induced defenses will have the same effect and whether reduced foliar damage in defended plants is the cause of this pattern. In a factorial field experiment using common milkweed, Asclepias syriaca, we induced plant defenses using jasmonic acid (JA) and imposed foliar damage using scissors. We found that JA-induced plants experienced selection for more inflorescences that were smaller in size (fewer flowers), while control plants only experienced a trend toward selection for larger inflorescences (more flowers); all effects were independent of foliar damage. Our results demonstrate that induced defenses can alter both the strength and direction of selection on reproductive traits, and suggest that antiherbivore defenses may promote the evolution of plant reproductive diversity.


2018 ◽  
Author(s):  
Russell A. Ligon ◽  
Christopher D. Diaz ◽  
Janelle L. Morano ◽  
Jolyon Troscianko ◽  
Martin Stevens ◽  
...  

Ornaments used in courtship often vary wildly among species, reflecting the evolutionary interplay between mate preference functions and the constraints imposed by natural selection. Consequently, understanding the evolutionary dynamics responsible for ornament diversification has been a longstanding challenge in evolutionary biology. However, comparing radically different ornaments across species, as well as different classes of ornaments within species, is a profound challenge to understanding diversification of sexual signals. Using novel methods and a unique natural history dataset, we explore evolutionary patterns of ornament evolution in a group - the birds-of-paradise - exhibiting dramatic phenotypic diversification widely assumed to be driven by sexual selection. Rather than the tradeoff between ornament types originally envisioned by Darwin and Wallace, we found positive correlations among cross-modal (visual/acoustic) signals indicating functional integration of ornamental traits into a composite unit - the courtship phenotype. Furthermore, given the broad theoretical and empirical support for the idea that systemic robustness - functional overlap and interdependency - promotes evolutionary innovation, we posit that birds-of-paradise have radiated extensively through ornamental phenotype space as a consequence of the robustness in the courtship phenotype that we document at a phylogenetic scale. We suggest that the degree of robustness in courtship phenotypes among taxa can provide new insights into the relative influence of sexual and natural selection on phenotypic radiations.Author SummaryAnimals frequently vary widely in ornamentation, even among closely related species. Understanding the patterns that underlie this variation is a significant challenge, requiring comparisons among drastically different traits - like comparing apples to oranges. Here, we use novel analytical approaches to quantify variation in ornamental diversity and richness across the wildly divergent birds-of-paradise, a textbook example of how sexual selection can profoundly shape organismal phenotypes. We find that color and acoustic complexity, along with behavior and acoustic complexity, are positively correlated across evolutionary time-scales. Positive covariation among ornament classes suggests that selection is acting on correlated suites of traits - a composite courtship phenotype - and that this integration may be partially responsible for the extreme variation we see in birds-of-paradise.


Genetics ◽  
1980 ◽  
Vol 94 (4) ◽  
pp. 989-1000
Author(s):  
Francis Minvielle

ABSTRACT A quantitative character controlled at one locus with two alleles was submitted to artificial (mass) selection and to three modes of opposing natural selection (directional selection, overdominance and underdominance) in a large random-mating population. The selection response and the limits of the selective process were studied by deterministic simulation. The lifetime of the process was generally between 20 and 100 generations and did not appear to depend on the mode of natural selection. However, depending on the values of the parameters (initial gene frequency, selection intensity, ratio of the effect of the gene to the environmental standard deviation, fitness values) the following outcomes of selection were observed: fixation of the allele favored by artificial selection, stable nontrivial equilibrium, unstable equilibrium and loss of the allele favored by artificial selection. Finally, the results of the simulation were compared to the results of selection experiments.


2021 ◽  
Author(s):  
Z Jafarian ◽  
S Khamse ◽  
H Afshar ◽  
Khorram Khorshid HR ◽  
A Delbari ◽  
...  

Abstract Across the human protein-coding genes, the neuron-specific gene, RASGEF1C, contains the longest (GGC)-repeat, spanning its core promoter and 5′ untranslated region (RASGEF1C-201 ENST00000361132.9). RASGEF1C expression dysregulation occurs in late-onset neurocognitive disorders (NCDs), such as Alzheimer’s disease. Here we sequenced the GGC-repeat in a sample of human subjects (N = 269), consisting of late-onset NCDs (N = 115) and controls (N = 154). We also studied the status of this STR across vertebrates. The 6-repeat allele of this repeat was the predominant allele in the controls (frequency = 0.85) and NCD patients (frequency = 0.78). The NCD genotype compartment consisted of an excess of genotypes that lacked the 6-repeat (Mid-P exact = 0.004). We also detected divergent genotypes that were present in five NCD patients and not in the controls (Mid-P exact = 0.007). This STR expanded beyond 2-repeats specifically in primates, and was at maximum length in human. We conclude that there is natural selection for the 6-repeat allele of the RASGEF1C (GGC)-repeat in human, and significant divergence from that allele in late-onset NCDs. Indication of natural selection for predominantly abundant STR alleles and divergent genotypes enhance the perspective of evolutionary biology and disease pathogenesis in human complex disorders.


2019 ◽  
Author(s):  
Waqas Chaudhry ◽  
Nicole Vega ◽  
Adithi Govindan ◽  
Rodrigo Garcia ◽  
Esther Lee ◽  
...  

AbstractBacteriophages are deemed either lytic (virulent) or temperate, respectively depending on whether their genomes are transmitted solely horizontally, or both horizontally and vertically. To elucidate the ecological and evolutionary conditions under which natural selection will favor the evolution and maintenance of lytic or temperate modes of phage replication and transmission, we use a comprehensive mathematical model of the dynamics of temperate and virulent phage in populations of bacteria sensitive and resistant to these viruses. For our numerical analysis of the properties of this model, we use parameters estimated with the temperate bacteriophage Lambda, λ, it’s clear and virulent mutants, andE. colisensitive and resistant - refractory to these phages. Using batch and serial transfer population dynamic and reconstruction experiments, we test the hypotheses generated from this theoretical analysis. Based on the results of this jointly theoretical and experimental study, we postulate the conditions under which natural selection will favor the evolution and maintenance of lytic and temperate modes of phage replication and transmission. A compelling and novel prediction thisin silico,in vitro, andin plasticostudy makes is lysogenic bacteria from natural populations will be resistant-refractory to the phage for which they are lysogenic as well as lytic phage sharing the same receptors as these temperate viruses.


Sign in / Sign up

Export Citation Format

Share Document