scholarly journals Threat imminence reveals links among unfolding of anticipatory physiological response, cortical-subcortical intrinsic functional connectivity, and anxiety

Author(s):  
Rany Abend ◽  
Sonia G. Ruiz ◽  
Mira A. Bajaj ◽  
Anita Harrewijn ◽  
Julia O. Linke ◽  
...  

Excessive expression of threat-anticipatory defensive responses is central in anxiety. Animal research indicates that anticipatory responses are dynamically organized by threat imminence and rely on conserved circuitry. Insight from translational work on threat imminence could guide mechanistic research mapping abnormal function in this circuitry to aberrant defensive responses in anxiety. Here, we initiate such research. Fifty pediatric anxiety patients and healthy-comparisons (33 females) completed a threat-anticipation task whereby cues signaled delivery of highly-painful (threat) or non-painful (safety) heat. Temporal changes in skin-conductance indexed defensive responding as function of threat imminence. Resting-state functional connectivity data were used to identify intrinsic-function correlates of anticipatory response within a specific functional network derived from translational research. Results indicate that anxiety was associated with greater increase in anticipatory response as threats became more imminent. Magnitude of increase in threat-anticipatory responses corresponded to intrinsic connectivity within a cortical-subcortical circuit; importantly, more severe anxiety was associated with greater connectivity between ventromedial prefrontal cortex and hippocampus and basolateral amygdala, a circuit implicated in animal models of anxiety. These findings link basic-translational and clinical research, highlighting aberrant intrinsic function in conserved defensive circuitry as potential pathophysiological mechanism in anxiety.

2018 ◽  
Author(s):  
Maxwell L. Elliott ◽  
Annchen R. Knodt ◽  
Megan Cooke ◽  
M. Justin Kim ◽  
Tracy R. Melzer ◽  
...  

AbstractIntrinsic connectivity, measured using resting-state fMRI, has emerged as a fundamental tool in the study of the human brain. However, due to practical limitations, many studies do not collect enough resting-state data to generate reliable measures of intrinsic connectivity necessary for studying individual differences. Here we present general functional connectivity (GFC) as a method for leveraging shared features across resting-state and task fMRI and demonstrate in the Human Connectome Project and the Dunedin Study that GFC offers better test-retest reliability than intrinsic connectivity estimated from the same amount of resting-state data alone. Furthermore, at equivalent scan lengths, GFC displays higher heritability on average than resting-state functional connectivity. We also show that predictions of cognitive ability from GFC generalize across datasets, performing as well or better than resting-state or task data alone. Collectively, our work suggests that GFC can improve the reliability of intrinsic connectivity estimates in existing datasets and, subsequently, the opportunity to identify meaningful correlates of individual differences in behavior. Given that task and resting-state data are often collected together, many researchers can immediately derive more reliable measures of intrinsic connectivity through the adoption of GFC rather than solely using resting-state data. Moreover, by better capturing heritable variation in intrinsic connectivity, GFC represents a novel endophenotype with broad applications in clinical neuroscience and biomarker discovery.


2021 ◽  
pp. 1-11
Author(s):  
Hannah C. Becker ◽  
Luke J. Norman ◽  
Huan Yang ◽  
Christopher S. Monk ◽  
K. Luan Phan ◽  
...  

Abstract Background Prior investigation of adult patients with obsessive compulsive disorder (OCD) has found greater functional connectivity within orbitofrontal–striatal–thalamic (OST) circuitry, as well as altered connectivity within and between large-scale brain networks such as the cingulo-opercular network (CON) and default mode network (DMN), relative to controls. However, as adult OCD patients often have high rates of co-morbid anxiety and long durations of illness, little is known about the functional connectivity of these networks in relation to OCD specifically, or in young patients near illness onset. Methods In this study, unmedicated female patients with OCD (ages 8–21 years, n = 23) were compared to age-matched female patients with anxiety disorders (n = 26), and healthy female youth (n = 44). Resting-state functional connectivity was used to determine the strength of functional connectivity within and between OST, CON, and DMN. Results Functional connectivity within the CON was significantly greater in the OCD group as compared to the anxiety and healthy control groups. Additionally, the OCD group displayed greater functional connectivity between OST and CON compared to the other two groups, which did not differ significantly from each other. Conclusions Our findings indicate that previously noted network connectivity differences in pediatric patients with OCD were likely not attributable to co-morbid anxiety disorders. Moreover, these results suggest that specific patterns of hyperconnectivity within CON and between CON and OST circuitry may characterize OCD relative to non-OCD anxiety disorders in youth. This study improves understanding of network dysfunction underlying pediatric OCD as compared to pediatric anxiety.


2020 ◽  
Author(s):  
Shiying Wang ◽  
Jeffrey G. Malins ◽  
Heping Zhang ◽  
Jeffrey R. Gruen

AbstractBackgroundTraumatic experiences during childhood or adolescence are a significant risk factor for multiple psychiatric disorders and adversely affect cognitive functions. Resting-state functional magnetic resonance imaging has been used to investigate the effects of traumatic experiences on functional connectivity, but the impact of sex differences has not been well documented. This study investigated sex-specific associations between resting-state functional connectivity and traumatic experiences in typically developing youth.MethodsThe sample comprised 1395 participants, ages 8 to 21 years, from the Philadelphia Neurodevelopmental Cohort. Resting-state functional connectivity was characterized by voxel-wise intrinsic connectivity distribution parameter values derived from resting-state functional magnetic resonance imaging. Traumatic experiences were assessed based on a structured psychiatric evaluation. Sex, the number of traumatic events, and their interaction were regressed onto voxel-wise intrinsic connectivity distribution parameter values. Brain regions that passed cluster correction were used as seeds to define resting-state networks.ResultsAfter quality control, the final sample included 914 participants (mean (SD) age, 14.6 (3.3) years; 529 (57.8%) females; 437 (47.8%) experienced at least one kind of traumatic event). Four discrete anatomical clusters showed decreased functional connectivity as the number of traumatic events increased. The resting-state networks defined by using these four clusters as seeds corresponded with the somatomotor network. Sex-specific associations were identified in another four clusters for which males showed increased connectivity, and females showed decreased connectivity as the number of traumatic events increased. The resting-state networks defined by the four sex-specific clusters corresponded with the default mode network.ConclusionsTraumatic experiences are associated with an alteration of resting-state functional connectivity in the somatomotor network in youth without psychiatric diagnoses. The associations differ in direction between males and females in the default mode network, suggesting sex-specific responses to early exposure to trauma.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaolei Qiu ◽  
Shuiping Lu ◽  
Min Zhou ◽  
Wei Yan ◽  
Jinglun Du ◽  
...  

Objective: Age of onset is one of the heterogeneous factors in schizophrenia, and an earlier onset of the disease indicated a worse prognosis. The left superior frontal gyrus (SFG) is involved in numerous cognitive and motor control tasks. Hence, we explored the relationship between abnormal changes in SFG resting-state functional connectivity (rsFC) and cognitive function in the peak age of incidence to understand better the pathophysiological mechanism in youth-onset drug-naïve schizophrenia to search for reliable biomarkers.Methods: About 66 youth-onset drug-naïve schizophrenia patients and 59 healthy controls (HCs) were included in this study. Abnormal connectivity changes in the left SFG and whole brain were measured using the region of interest (ROI) rsFC analysis method. The cognitive function was assessed using the MATRICS Consensus Cognitive Battery (MCCB), and the severity of the clinical symptoms was evaluated by positive and negative syndrome scale (PANSS). Furthermore, we analyzed the relationships among abnormal FC values, cognition scores, and clinical symptoms.Results: We found decreased FC between left SFG and bilateral precuneus (PCUN), right hippocampus, right parahippocampal gyrus, left thalamus, left caudate, insula, and right superior parietal lobule (SPL), whereas increased FC was seen between the left SFG and right middle frontal gyrus (MFG) in the youth-onset drug-naïve schizophrenia group, compared with HCs. Meanwhile, the T-scores were lower in each cognitive domain than HCs. Moreover, in the youth-onset drug-naive schizophrenia group, the insula was negatively correlated with processing speed. No significant correlations were found between the FC-value and PANSS score.Conclusions: Our findings suggest widespread FC network abnormalities in the left SFG and widespread cognitive impairments in the early stages of schizophrenia. The dysfunctional connectivity of the left SFG may be a potential pathophysiological mechanism in youth-onset drug-naïve schizophrenia.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Zhonglin Li ◽  
Li Tong ◽  
Min Guan ◽  
Wenjie He ◽  
Linyuan Wang ◽  
...  

Real-time fMRI neurofeedback (rtfMRI-nf) is a promising tool for enhancing emotion regulation capability of subjects and for the potential alleviation of neuropsychiatric disorders. The amygdala is composed of structurally and functionally distinct nuclei, such as the basolateral amygdala (BLA) and centromedial amygdala (CMA), both of which are involved in emotion processing, generation, and regulation. However, the effect of rtfMRI-nf on the resting-state functional connectivity (rsFC) of BLA and CMA remains to be elucidated. In our study, participants were provided with ongoing information on their emotion states by using real-time multivariate voxel pattern analysis. Results showed that participants presented significantly increased rsFC of BLA and CMA with prefrontal cortex, rostral anterior cingulate cortex, and some others related to emotion after rtfMRI-nf training. The findings provide important evidence for the emotion regulation effectiveness of rtfMRI-nf training and indicate its usefulness as a tool for the self-regulation of emotion.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1889-P
Author(s):  
ALLISON L.B. SHAPIRO ◽  
SUSAN L. JOHNSON ◽  
BRIANNE MOHL ◽  
GRETA WILKENING ◽  
KRISTINA T. LEGGET ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document