scholarly journals A Multi-Omics Human Liver Organoid Screening Platform for DILI Risk Prediction

2021 ◽  
Author(s):  
Charles J. Zhang ◽  
Matthew J. O’Meara ◽  
Sophia R. Meyer ◽  
Sha Huang ◽  
Meghan M. Capeling ◽  
...  

AbstractBackground and AimsDrug-induced liver injury (DILI) is a prominent failure mode in drug development resulting in clinical trial failures and post-approval withdrawal. Improved in vitro models for DILI risk prediction that can model diverse genetics are needed to improve safety and reduce high attrition rates in drug development. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. The recent clinical failure of inarigivir soproxil due to DILI underscores the need for improved models.MethodsHLOs were adapted for high-throughput drug screening in dispersed-cell 384-well format and a collection of DILI-associated drugs were screened. HLOs were also adapted to a liver-chip system to investigate enhanced in vivo-like function. Both platforms were benchmarked for their ability to predict DILI using combined biochemical assays, microscopy-based morphological profiling, and transcriptomics.ResultsDispersed HLOs retained DILI predictive capacity of intact HLOs and are amenable to high-throughput screening allowing for measurable IC50 values for cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of action. HLOs on chips were shown to increase albumin production, CYP450 expression and also release ALT/AST when treated with known DILI drugs. Importantly, HLO liver chips were able to predict hepatotoxicity of tenofovir-inarigivir and showed steatosis and mitochondrial perturbation via phenotypic and transcriptomic analysis.ConclusionsThe high throughput and liver-on-chip system exhibit enhanced in vivo-like function and demonstrate the utility of the platforms in early and late-stage drug development. Tenofovir-inarigivr associated hepatotoxicity was observed and highly correlates with the clinical manifestation of DILI.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


2009 ◽  
Vol 2 ◽  
pp. JCD.S3660
Author(s):  
Hang Fai Kwok ◽  
Julie A. Gormley ◽  
Christopher J. Scott ◽  
James A. Johnston ◽  
Shane A. Olwill

The study of death receptor family induced apoptosis has gained momentum in recent years with the knowledge that therapeutic antibodies targeting DR4 and DR5 (death receptor's 4 and 5) have proved efficacious in multiple clinical trials. The therapeutic rationale is based on targeting and amplifying a tumour tissues normal cell death programme (apoptosis). While advances in the targeting of DR4 and DR5 have been successful the search for an agonistic antibody to another family member, the Fas receptor, has proven more elusive. This is partly due to the differing in vitro and in vivo characteristics of individual antibodies. In order to induce Fas targeted cell death an antibody must be capable of binding to and trimerising the receptor. It has been shown that antibodies capable of performing this function in vivo, with the assistance of tumour associated cells, do not always induce apoptosis in vitro. As a result the use of current methodologies to detect functional antibodies in vitro may have dismissed potential therapeutic candidates ('false negative'). Here we report a novel high throughput screening technique which artificially cross-links antibodies bound to the Fas receptor. By combining this process with Annexin-V and Prodidium Iodide (PI) staining we can select for antibodies which have the potential to induce apoptosis in vivo.


2004 ◽  
Vol 9 (8) ◽  
pp. 687-694 ◽  
Author(s):  
Yoonsuk Lee ◽  
Dong-Ku Kang ◽  
Soo-Ik Chang ◽  
Moon Hi Han ◽  
In-Cheol Kang

Protein microarray is an emerging technology that makes high-throughput analysis possible for protein-protein interactions and analysis of proteome and biomarkers in parallel. The authors investigated the application of a novel protein microarray chip, Proteo Chip, in new drug discovery. Integrin αvβ3 microarray immobilized on the Proteo Chip was employed to screen new active peptides against the integrin from multiple hexapeptide sublibraries of a positional scanning synthetic peptide combinatorial library (PS-SPCL). The integrin αvβ3-vitronectin interaction was successfully demonstrated on the integrin microarray in a dose-dependent manner andwas inhibited not only by the syntheticRGDpeptide but also by various integrin antagonists on the integrin microarray chip. Novel peptide ligands with high affinity to the integrin were also identified from the peptide libraries with this chip-based screening system by a competitive inhibition assay in a simultaneous and highthroughput fashion. The authors have confirmed antiangiogenic functions of the novel peptides thus screened through an in vitro and in vivo angiogenesis assay. These results provide evidence that the Proteo Chip is a promising tool for highthroughput screening of lead molecules in new drug development.


2020 ◽  
Vol 16 (1) ◽  
pp. 13-23
Author(s):  
Nazmina Vhora ◽  
Ujjal Naskar ◽  
Aishwarya Hiray ◽  
Abhijeet S. Kate ◽  
Alok Jain

BACKGROUND: A higher rate of attenuation of molecules in drug discovery has enabled pharmaceutical companies to enhance the efficiency of their hit identification and lead optimization. Selection and development of appropriate in-vitro and in-vivo strategies may improve this process as primary and secondary screening utilize both strategies. In-vivo approaches are too relentless and expensive for assessing hits. Therefore, it has become indispensable to develop and implement suitable in-vitro screening methods to execute the required activities and meet the respective targets. However, the selection of an appropriate in-vitro assay for specific evaluation of cellular activity is no trivial task. It requires thorough investigation of the various parameters involved. AIM: In this review, we aim to discuss in-vitro assays for type 2 diabetes (T2D), which have been utilized extensively by researchers over the last five years, including target-based, non-target based, low-throughput, and high-throughput screening assays. METHODS: The literature search was conducted using databases including Scifinder, PubMed, ScienceDirect, and Google Scholar to find the significant published articles. DISCUSSION and CONCLUSION: The accuracy and relevance of in-vitro assays have a significant impact on the drug discovery process for T2D, especially in assessing the antidiabetic activity of compounds and identifying the site of effect in high-throughput screening. The report reviews the advantages, limitations, quality parameters, and applications of the probed invitro assays, and compares them with one another to enable the selection of the optimal method for any purpose. The information on these assays will accelerate numerous procedures in the drug development process with consistent quality and accuracy.


2005 ◽  
Vol 125 (1) ◽  
pp. 131-139 ◽  
Author(s):  
Hiroshi KOMURA ◽  
Kenichi MATSUDA ◽  
Yukie SHIGEMOTO ◽  
Iichiro KAWAHARA ◽  
Rieko ANO ◽  
...  

2018 ◽  
Vol 3 (1) ◽  
Author(s):  
Luis E Contreras-Llano ◽  
Cheemeng Tan

Abstract The incorporation of cell-free transcription and translation systems into high-throughput screening applications enables the in situ and on-demand expression of peptides and proteins. Coupled with modern microfluidic technology, the cell-free methods allow the screening, directed evolution and selection of desired biomolecules in minimal volumes within a short timescale. Cell-free high-throughput screening applications are classified broadly into in vitro display and on-chip technologies. In this review, we outline the development of cell-free high-throughput screening methods. We further discuss operating principles and representative applications of each screening method. The cell-free high-throughput screening methods may be advanced by the future development of new cell-free systems, miniaturization approaches, and automation technologies.


2004 ◽  
Vol 9 (4) ◽  
pp. 273-285 ◽  
Author(s):  
Leoni A. Kunz-Schughart ◽  
James P. Freyer ◽  
Ferdinand Hofstaedter ◽  
Reinhard Ebner

Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today’s strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.


2017 ◽  
Vol 312 (5) ◽  
pp. H1002-H1012 ◽  
Author(s):  
Junyu Yang ◽  
Milton E. Brown ◽  
Hanshuo Zhang ◽  
Mario Martinez ◽  
Zhihua Zhao ◽  
...  

Myocardial infarction (MI) is the most common cause of heart failure. Excessive production of ROS plays a key role in the pathogenesis of cardiac remodeling after MI. NADPH with NADPH oxidase (Nox)2 as the catalytic subunit is a major source of superoxide production, and expression is significantly increased in the infarcted myocardium, especially by infiltrating macrophages. While microRNAs (miRNAs) are potent regulators of gene expression and play an important role in heart disease, there still lacks efficient ways to identify miRNAs that target important pathological genes for treating MI. Thus, the overall objective was to establish a miRNA screening and delivery system for improving heart function after MI using Nox2 as a critical target. With the use of the miRNA-target screening system composed of a self-assembled cell microarray (SAMcell), three miRNAs, miR-106b, miR-148b, and miR-204, were identified that could regulate Nox2 expression and its downstream products in both human and mouse macrophages. Each of these miRNAs were encapsulated into polyketal (PK3) nanoparticles that could effectively deliver miRNAs into macrophages. Both in vitro and in vivo studies in mice confirmed that PK3-miRNAs particles could inhibit Nox2 expression and activity and significantly improve infarct size and acute cardiac function after MI. In conclusion, our results show that miR-106b, miR-148b, and miR-204 were able to improve heart function after myocardial infarction in mice by targeting Nox2 and possibly altering inflammatory cytokine production. This screening system and delivery method could have broader implications for miRNA-mediated therapeutics for cardiovascular and other diseases. NEW & NOTEWORTHY NADPH oxidase (Nox)2 is a promising target for treating cardiovascular disease, but there are no specific inhibitors. Finding endogenous signals that can target Nox2 and other inflammatory molecules is of great interest. In this study, we used high-throughput screening to identify microRNAs that target Nox2 and improve cardiac function after infarction.


2021 ◽  
Author(s):  
Cristina Landeta ◽  
Adrian Mejia-Santana

Antimicrobial resistance is one of the greatest global health challenges today. For over three decades antibacterial discovery research and development has been focused on cell-based and target-based high throughput assays. Target-based screens use diagnostic enzymatic reactions to look for molecules that can bind directly and inhibit the target. Target-based screens are only applied to proteins that can be successfully expressed, purified and the activity of which can be effectively measured using a biochemical assay. Often times the molecules found in these in vitro screens are not active in cells due to poor permeability or efflux. On the other hand, cell-based screens use whole cells and look for growth inhibition. These screens give higher number of hits than target-based assays and can simultaneously test many targets of one process or pathway in their physiological context. Both strategies have pros and cons when used separately. In the past decade and a half our increasing knowledge of bacterial physiology has led to the development of innovative and sophisticated technologies to perform high throughput screening combining these two strategies and thus minimizing their disadvantages. In this review we discuss recent examples of high throughput approaches that used both target-based and whole-cell screening to find new antibacterials, the new insights they have provided and how this knowledge can be applied to other in vivo validated targets to develop new antimicrobials.


Sign in / Sign up

Export Citation Format

Share Document