scholarly journals The Use of 3-D Cultures for High-Throughput Screening: The Multicellular Spheroid Model

2004 ◽  
Vol 9 (4) ◽  
pp. 273-285 ◽  
Author(s):  
Leoni A. Kunz-Schughart ◽  
James P. Freyer ◽  
Ferdinand Hofstaedter ◽  
Reinhard Ebner

Over the past few years, establishment and adaptation of cell-based assays for drug development and testing has become an important topic in high-throughput screening (HTS). Most new assays are designed to rapidly detect specific cellular effects reflecting action at various targets. However, although more complex than cell-free biochemical test systems, HTS assays using monolayer or suspension cultures still reflect a highly artificial cellular environment and may thus have limited predictive value for the clinical efficacy of a compound. Today’s strategies for drug discovery and development, be they hypothesis free or mechanism based, require facile, HTS-amenable test systems that mimic the human tissue environment with increasing accuracy in order to optimize preclinical and preanimal selection of the most active molecules from a large pool of potential effectors, for example, against solid tumors. Indeed, it is recognized that 3-dimensional cell culture systems better reflect the in vivo behavior of most cell types. However, these 3-D test systems have not yet been incorporated into mainstream drug development operations. This article addresses the relevance and potential of 3-D in vitro systems for drug development, with a focus on screening for novel antitumor drugs. Examples of 3-D cell models used in cancer research are given, and the advantages and limitations of these systems of intermediate complexity are discussed in comparison with both 2-D culture and in vivo models. The most commonly used 3-D cell culture systems, multicellular spheroids, are emphasized due to their advantages and potential for rapid development as HTS systems. Thus, multicellular tumor spheroids are an ideal basis for the next step in creating HTS assays, which are predictive of in vivo antitumor efficacy.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2236
Author(s):  
Indra Van Zundert ◽  
Beatrice Fortuni ◽  
Susana Rocha

Over the past decades, research has made impressive breakthroughs towards drug delivery systems, resulting in a wide range of multifunctional engineered nanoparticles with biomedical applications such as cancer therapy. Despite these significant advances, well-designed nanoparticles rarely reach the clinical stage. Promising results obtained in standard 2D cell culture systems often turn into disappointing outcomes in in vivo models. Although the overall majority of in vitro nanoparticle research is still performed on 2D monolayer cultures, more and more researchers started acknowledging the importance of using 3D cell culture systems, as better models for mimicking the in vivo tumor physiology. In this review, we provide a comprehensive overview of the 3D cancer cell models currently available. We highlight their potential as a platform for drug delivery studies and pinpoint the challenges associated with their use. We discuss in which way each 3D model mimics the in vivo tumor physiology, how they can or have been used in nanomedicine research and to what extent the results obtained so far affect the progress of nanomedicine development. It is of note that the global scientific output associated with 3D models is limited, showing that the use of these systems in nanomedicine investigation is still highly challenging.


2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Laurence Finot ◽  
Eric Chanat ◽  
Frederic Dessauge

AbstractIn vivo study of tissue or organ biology in mammals is very complex and progress is slowed by poor accessibility of samples and ethical concerns. Fortunately, however, advances in stem cell identification and culture have made it possible to derive in vitro 3D “tissues” called organoids, these three-dimensional structures partly or fully mimicking the in vivo functioning of organs. The mammary gland produces milk, the source of nutrition for newborn mammals. Milk is synthesized and secreted by the differentiated polarized mammary epithelial cells of the gland. Reconstructing in vitro a mammary-like structure mimicking the functional tissue represents a major challenge in mammary gland biology, especially for farm animals for which specific agronomic questions arise. This would greatly facilitate the study of mammary gland development, milk secretion processes and pathological effects of viral or bacterial infections at the cellular level, all with the objective of improving milk production at the animal level. With this aim, various 3D cell culture models have been developed such as mammospheres and, more recently, efforts to develop organoids in vitro have been considerable. Researchers are now starting to draw inspiration from other fields, such as bioengineering, to generate organoids that would be more physiologically relevant. In this chapter, we will discuss 3D cell culture systems as organoids and their relevance for agronomic research.


2014 ◽  
Vol 89 (1) ◽  
pp. 811-823 ◽  
Author(s):  
Yi-Ping Li ◽  
Santseharay Ramirez ◽  
Lotte Mikkelsen ◽  
Jens Bukh

ABSTRACTThe first discovered and sequenced hepatitis C virus (HCV) genome and the firstin vivoinfectious HCV clones originated from the HCV prototype strains HCV-1 and H77, respectively, both widely used in research of this important human pathogen. In the present study, we developed efficient infectious cell culture systems for these genotype 1a strains by using the HCV-1/SF9_A and H77Cin vivoinfectious clones. We initially adapted a genome with the HCV-1 5′UTR-NS5A (where UTR stands for untranslated region) and the JFH1 NS5B-3′UTR (5-5A recombinant), including the genotype 2a-derived mutations F1464L/A1672S/D2979G (LSG), to grow efficiently in Huh7.5 cells, thus identifying the E2 mutation S399F. The combination of LSG/S399F and reported TNcc(1a)-adaptive mutations A1226G/Q1773H/N1927T/Y2981F/F2994S promoted adaptation of the full-length HCV-1 clone. An HCV-1 recombinant with 17 mutations (HCV1cc) replicated efficiently in Huh7.5 cells and produced supernatant infectivity titers of 104.0focus-forming units (FFU)/ml. Eight of these mutations were identified from passaged HCV-1 viruses, and the A970T/I1312V/C2419R/A2919T mutations were essential for infectious particle production. Using CD81-deficient Huh7 cells, we further demonstrated the importance of A970T/I1312V/A2919T or A970T/C2419R/A2919T for virus assembly and that the I1312V/C2419R combination played a major role in virus release. Using a similar approach, we found that NS5B mutation F2994R, identified here from culture-adapted full-length TN viruses and a common NS3 helicase mutation (S1368P) derived from viable H77C and HCV-1 5-5A recombinants, initiated replication and culture adaptation of H77C containing LSG and TNcc(1a)-adaptive mutations. An H77C recombinant harboring 19 mutations (H77Ccc) replicated and spread efficiently after transfection and subsequent infection of naive Huh7.5 cells, reaching titers of 103.5and 104.4FFU/ml, respectively.IMPORTANCEHepatitis C virus (HCV) was discovered in 1989 with the cloning of the prototype strain HCV-1 genome. In 1997, two molecular clones of H77, the other HCV prototype strain, were shown to be infectious in chimpanzees, but notin vitro. HCV research was hampered by a lack of infectious cell culture systems, which became available only in 2005 with the discovery of JFH1 (genotype 2a), a genome that could establish infection in Huh7.5 cells. Recently, we developedin vitroinfectious clones for genotype 1a (TN), 2a (J6), and 2b (J8, DH8, and DH10) strains by identifying key adaptive mutations. Globally, genotype 1 is the most prevalent. Studies using HCV-1 and H77 prototype sequences have generated important knowledge on HCV. Thus, thein vitroinfectious clones developed here for these 1a strains will be of particular value in advancing HCV research. Moreover, our findings open new avenues for the culture adaptation of HCV isolates of different genotypes.


2021 ◽  
Vol 8 (12) ◽  
pp. 211
Author(s):  
E. Josephine Boder ◽  
Ipsita A. Banerjee

Though Alzheimer’s disease (AD) is the most common cause of dementia, complete disease-modifying treatments are yet to be fully attained. Until recently, transgenic mice constituted most in vitro model systems of AD used for preclinical drug screening; however, these models have so far failed to adequately replicate the disease’s pathophysiology. However, the generation of humanized APOE4 mouse models has led to key discoveries. Recent advances in stem cell differentiation techniques and the development of induced pluripotent stem cells (iPSCs) have facilitated the development of novel in vitro devices. These “microphysiological” systems—in vitro human cell culture systems designed to replicate in vivo physiology—employ varying levels of biomimicry and engineering control. Spheroid-based organoids, 3D cell culture systems, and microfluidic devices or a combination of these have the potential to replicate AD pathophysiology and pathogenesis in vitro and thus serve as both tools for testing therapeutics and models for experimental manipulation.


1999 ◽  
Vol 23 (3) ◽  
pp. 307-313 ◽  
Author(s):  
J Beattie ◽  
V Borromeo ◽  
S Bramani ◽  
C Secchi ◽  
WR Baumbach ◽  
...  

We describe the properties of three monoclonal antibodies (MAbs) to ovine GH, two of which have previously been shown to enhance, in vivo, the biological activity of bovine and ovine growth hormone. We have examined the effects of these MAbs on GH activity in two appropriate GH-responsive cell culture systems, investigating both acute signalling effects (Janus-activated kinase (Jak)-2 tyrosine phosphorylation -5 min) and longer-term (MTT-formazan production -24 h) effects of hormone-antibody complexes. In the 3T3-F442A pre-adipocyte cell line (which has been demonstrated to be GH responsive), we show that complexation of recombinant bovine (rb) GH with either of the two enhancing anti-ovine GH MAbs (OA11 and OA15) and the non-enhancing MAb, OA14, attenuates the ability of GH to stimulate tyrosine phosphorylation of Jak-2 at a 5-min time point. Using the mouse myeloid cell line, FDC-P1, stably transfected with the full-length ovine GH receptor (oGHR), we demonstrate that rbGH causes a dose-dependent increase in MTT-formazan production by these cells. Further, we demonstrate that OA11 and OA14, but not OA15, cause a decrease in this stimulatory activity of rbGH over a hormone concentration range of 5-50 ng/ml at both 24 and 48 h. We conclude that the different in vitro activities of the two in vivo enhancing MAbs are most probably related to the time-courses over which these two assays are performed, and also to the relative affinities between antibody, hormone and receptor. In addition, the in vitro inhibitory activity of the enhancing MAb OA11 in both short- and long-term bioassay lends further support to an exclusively in vivo model for MAb-mediated enhancement of GH action.


Lab on a Chip ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 1556-1566 ◽  
Author(s):  
Kelly Tan ◽  
Philip Keegan ◽  
Miles Rogers ◽  
Mingjian Lu ◽  
James R. Gosset ◽  
...  

Microphysiological systems (MPSs) are dynamic cell culture systems that provide micro-environmental and external cues to support physiologically relevant, organ-specific functions.


2018 ◽  
Vol 41 (4) ◽  
pp. 213-222
Author(s):  
Roberta Gentilini ◽  
Fabiola Munarin ◽  
Nora Bloise ◽  
Eleonora Secchi ◽  
Livia Visai ◽  
...  

Background: To date, cell cultures have been created either on 2-dimensional (2D) polystyrene surfaces or in 3-dimensional (3D) systems, which do not offer a controlled chemical composition, and which lack the soft environment encountered in vivo and the chemical stimuli that promote cell proliferation and allow complex cellular behavior. In this study, pectin-based hydrogels were developed and are proposed as versatile cell culture systems. Methods: Pectin-based hydrogels were produced by internally crosslinking pectin with calcium carbonate at different initial pH, aiming to control crosslinking kinetics and degree. Additionally, glucose and glutamine were added as additives, and their effects on the viscoelastic properties of the hydrogels and on cell viability were investigated. Results: Pectin hydrogels showed in high cell viability and shear-thinning behavior. Independently of hydrogel composition, an initial swelling was observed, followed by a low percentage of weight variation and a steady-state stage. The addition of glucose and glutamine to pectin-based hydrogels rendered higher cell viability up to 90%-98% after 1 hour of incubation, and these hydrogels were maintained for up to 7 days of culture, yet no effect on viscoelastic properties was detected. Conclusions: Pectin-based hydrogels that offer tunable composition were developed successfully. They are envisioned as synthetic extracellular matrix (ECM) either to study complex cellular behaviors or to be applied as tissue engineering substitutes.


Viruses ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 17
Author(s):  
Christos Dogrammatzis ◽  
Hope Waisner ◽  
Maria Kalamvoki

Viruses encode for structural proteins that participate in virion formation and include capsid and envelope proteins. In addition, viruses encode for an array of non-structural accessory proteins important for replication, spread, and immune evasion in the host and are often linked to virus pathogenesis. Most virus accessory proteins are non-essential for growth in cell culture because of the simplicity of the infection barriers or because they have roles only during a state of the infection that does not exist in cell cultures (i.e., tissue-specific functions), or finally because host factors in cell culture can complement their absence. For these reasons, the study of most nonessential viral factors is more complex and requires development of suitable cell culture systems and in vivo models. Approximately half of the proteins encoded by the herpes simplex virus 1 (HSV-1) genome have been classified as non-essential. These proteins have essential roles in vivo in counteracting antiviral responses, facilitating the spread of the virus from the sites of initial infection to the peripheral nervous system, where it establishes lifelong reservoirs, virus pathogenesis, and other regulatory roles during infection. Understanding the functions of the non-essential proteins of herpesviruses is important to understand mechanisms of viral pathogenesis but also to harness properties of these viruses for therapeutic purposes. Here, we have provided a comprehensive summary of the functions of HSV-1 non-essential proteins.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 10025-10025
Author(s):  
Matteo Maria Trucco ◽  
Breelyn A. Wilky ◽  
Ola Awad ◽  
Preeti Shah ◽  
Naheed Gul ◽  
...  

10025 Background: Chordoma is a rare primary bone malignancy that arises in the skull base, spine and sacrum and originates from remnants of the notochord. Therapy primarily consists of surgical resection and radiation. These tumors are typically resistant to conventional chemotherapy, and to date there are no FDA-approved agents for chordoma. The lack of in vivo models of chordoma has impeded the development of new therapies for this tumor. Methods: Primary tumor from a classic sacral chordoma was obtained, immediately processed into a single cell suspension and injected in to the parasacral area of a NOD/SCID/IL-2R gamma-null mouse, and tumor grew after 3 months. The NIH Chemical Genomics Center performed high-throughput screening of 2,816 compounds. Two established chordoma cell lines, U-CH1 and UCH2B, were treated and cell viability measured by CellTiter-Glo assay. Cells were incubated for 48 hours with drug concentrations ranging from 0.5nM to 46uM. The screen yielded several compounds that showed activity and two were tested in the xenograft. Results: We have established a xenograft model of dedifferentiated chordoma. High-throughput screening of compounds identified compounds that show activity against chordoma cell lines. In vivo testing of two identified compounds showed a dramatic reduction of tumor growth. Conclusions: We have established a xenograft model of dedifferentiated chordoma. High-throughput screening of compounds identified compounds that show activity against chordoma cell lines. In vivo testing of two identified compounds showed a dramatic reduction of tumor growth.


Sign in / Sign up

Export Citation Format

Share Document