scholarly journals Generation of CD34+CD43+ hematopoietic progenitors to induce thymocytes from human pluripotent stem cells

2021 ◽  
Author(s):  
Lea Flippe ◽  
Anne Gaignerie ◽  
Celine Serazin ◽  
Olivier Baron ◽  
Xavier Saulquin ◽  
...  

Immunotherapy using primary T cells has revolutionized medical care in some pathologies in recent years but limitations associated to challenging cell genome edition, insufficient cell number production, the use of only autologous cells and lack of product standardization have limited its uses in the clinic. The alternative use of T cells generated in vitro from human pluripotent stem cells (hPSCs) offers great advantages by providing a self-renewing source of T cells that can be readily genetically modified and facilitate the use of standardized universal off-the-shelf allogeneic cell products and rapid clinic access. However, despite their potential, the feasibility and functionality of T-cells differentiated from hPSCs needs better comprehension before moving to the clinic. In this study, we generated human induced pluripotent stem cells from T-cells (T-iPSCs) allowing preservation of already recombined TCR, with the same properties as human embryonic stem cells (hESCs). Based on these cells, we differentiated with high efficiency hematopoietic progenitor stem cells (HPSCs), capable of self-renewal and differentiation into any cell blood type, and then DN3a thymic progenitors from several T-iPSC lines. To better comprehend differentiation, we analyzed the transcriptomic profiles of the different cell types and demonstrated that HPSCs differentiated from hiPSCs had a very similar profile to cord blood hematopoietic stem cells (HSCs). Furthermore, differentiated T-cell progenitors had a similar profile to thymocytes at the DN3a stage of thymic lymphopoiesis. Therefore, with this approach, we were able to regenerate precursors of therapeutic human T cells to potentially treat a wide number of diseases.

2020 ◽  
Vol 15 (4) ◽  
pp. 301-307 ◽  
Author(s):  
Gaifang Wang ◽  
Maryam Farzaneh

Primary Ovarian Insufficiency (POI) is one of the main diseases causing female infertility that occurs in about 1% of women between 30-40 years of age. There are few effective methods for the treatment of women with POI. In the past few years, stem cell-based therapy as one of the most highly investigated new therapies has emerged as a promising strategy for the treatment of POI. Human pluripotent stem cells (hPSCs) can self-renew indefinitely and differentiate into any type of cell. Human Embryonic Stem Cells (hESCs) as a type of pluripotent stem cells are the most powerful candidate for the treatment of POI. Human-induced Pluripotent Stem Cells (hiPSCs) are derived from adult somatic cells by the treatment with exogenous defined factors to create an embryonic-like pluripotent state. Both hiPSCs and hESCs can proliferate and give rise to ectodermal, mesodermal, endodermal, and germ cell lineages. After ovarian stimulation, the number of available oocytes is limited and the yield of total oocytes with high quality is low. Therefore, a robust and reproducible in-vitro culture system that supports the differentiation of human oocytes from PSCs is necessary. Very few studies have focused on the derivation of oocyte-like cells from hiPSCs and the details of hPSCs differentiation into oocytes have not been fully investigated. Therefore, in this review, we focus on the differentiation potential of hPSCs into human oocyte-like cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed. Methods Monolayer cultured human embryonic stem cells and human-induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week. Results The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrate the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded. Conclusions Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a stepwise induction system in the future.


Blood ◽  
2013 ◽  
Vol 122 (25) ◽  
pp. 4035-4046 ◽  
Author(s):  
Igor I. Slukvin

Abstract Significant advances in cellular reprogramming technologies and hematopoietic differentiation from human pluripotent stem cells (hPSCs) have already enabled the routine production of multiple lineages of blood cells in vitro and opened novel opportunities to study hematopoietic development, model genetic blood diseases, and manufacture immunologically matched cells for transfusion and cancer immunotherapy. However, the generation of hematopoietic cells with robust and sustained multilineage engraftment has not been achieved. Here, we highlight the recent advances in understanding the molecular and cellular pathways leading to blood development from hPSCs and discuss potential approaches that can be taken to facilitate the development of technologies for de novo production of hematopoietic stem cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Katharina Seiler ◽  
Motokazu Tsuneto ◽  
Fritz Melchers

We review here our experiences with thein vitroreprogramming of somatic cells to induced pluripotent stem cells (iPSC) and subsequentin vitrodevelopment of hematopoietic cells from these iPSC and from embryonic stem cells (ESC). While, in principle, thein vitroreprogramming and subsequent differentiation can generate hematopoietic cell from any somatic cells, it is evident that many of the steps in this process need to be significantly improved before it can be applied to human cells and used in clinical settings of hematopoietic stem cell (HSC) transplantations.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1474-1474
Author(s):  
Satish Medicetty ◽  
Mariusz Z Ratajczak ◽  
Magdalena J Kucia ◽  
Ewa K. Zuba-Surma ◽  
Izabela Klich ◽  
...  

Abstract Abstract 1474 Poster Board I-497 We previously demonstrated that human cord blood contains a population of small (smaller in size than erythrocytes) CXCR4+CD133+CD34+SSEA-4+Oct-4+lin−CD45− cells (Leukemia 2007:21;297-303) and that these cells are mobilized into peripheral blood during tissue organ damage as seen for example in heart infarct (J. Am. Coll. Cardiol., 2009:53;1-9.) or stroke (Stroke. 2009:40;1237.). Similar cells were also reported in murine organs, and more importantly we described that these cells may differentiate in vitro into cells from all three germ layers (Leukemia 2006:20;857–869). To explore the possibility that human VSELs could become a source of pluripotent stem cells in regenerative medicine, our goal was to develop an efficient strategy to isolate these cells from adult patients. To test if VSELs similarly to their murine counterparts could be mobilized into peripheral blood after granulocyte colony stimulating factor (G-CSF) injection (Stem Cells 2008:26;2083-2092), we enrolled a group of young healthy donors who were mobilized for two consecutive days using G-CSF (480 μg/day subcutaneously). On the third day nucleated cells (TNC) were collected by apheresis. We evaluated number of VSELs in peripheral blood (PB) samples before and after G-CSF mobilization as well as the final number in the apheresis product. At least 1 million of TNC were acquired and analyzed by FACS Diva software. Three different fractions of non-hematopoietic stem cells enriched for VSELs (Lin−/CD45−/CD133+, Lin−/CD45−/CD34+, Lin−/CD45−/CXCR4+) as well as their CD45 positive hematopoietic counterparts were analyzed. The absolute numbers of cells from each population, contained in 1 μL of sample, were computed based on percent content of each population and TNC count for each individual sample. Results show that after G-CSF mobilization, human peripheral blood contains a population of lin− CD45− mononuclear cells that express CXCR4, CD34 and CD133 antigens. These lin− CD45− CXCR4+ CD133+ CD34+ cells are highly enriched for mRNA for intra-nuclear pluripotent embryonic transcription factors such as Oct-4, Sox2 and Nanog. More importantly we found that Oct-4 was expressed in nuclei of mobilized VSELs and that these cells also express the cell surface marker SSEA-4, the early embryonic glycolipid antigen commonly used as a marker for undifferentiated pluripotent human embryonic stem cells. We observed that these adult peripheral blood-derived VSELs are slightly larger than their counterparts identified in adult murine bone marrow, but are still very small. In addition, they also possess large nuclei containing embryonic-type unorganized euchromatin. Before G-CSF mobilization only very few VSELs were detectable in peripheral blood, whereas following G-CSF induced mobilization there was a very significant increase with in excess of 106 VSELs present in the apheresis product representing less than 0.01% of TNC. We postulate that while VSELs are relatively rare cells, they are mobilized into peripheral blood and that G-CSF induced mobilization could become a novel strategy to obtain human pluripotent stem cells for regenerative medicine. Disclosures: Medicetty: NeoStem Inc: Employment, Equity Ownership. Marasco: NeoStem Inc: Consultancy, Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Rodgerson: NeoStem Inc: Employment, Equity Ownership.


2020 ◽  
Author(s):  
Ping Zhou ◽  
Jia-Min Shi ◽  
Jing-E Song ◽  
Yu Han ◽  
Hong-Jiao Li ◽  
...  

Abstract Background: Derivation of osteoblast-like cells from human pluripotent stem cells (hPSCs) is a popular topic in bone tissue engineering. Although many improvements have been achieved, the low induction efficiency because of spontaneous differentiation hampers their applications. To solve this problem, a detailed understanding of the osteogenic differentiation process of hPSCs is urgently needed.Methods: Monolayer cultured human embryonic stem cells and human induced pluripotent stem cells were differentiated in commonly applied serum-containing osteogenic medium for 35 days. In addition to traditional assays such as cell viability detection, reverse transcription-polymerase chain reaction, immunofluorescence, and alizarin red staining, we also applied studies of cell counting, cell telomerase activity, and flow cytometry as essential indicators to analyse the cell type changes in each week.Results: The population of differentiated cells was quite heterogeneous throughout the 35 days of induction. Then, cell telomerase activity and cell cycle analyses have value in evaluating the cell type and tumourigenicity of the obtained cells. Finally, a dynamic map was made to integrated the analysis of these results during osteogenic differentiation of hPSCs, and the cell types at defined stages were concluded.Conclusions: Our results lay the foundation to improve the in vitro osteogenic differentiation efficiency of hPSCs by supplementing with functional compounds at the desired stage, and then establishing a step-wise induction system in the future.


2019 ◽  
Author(s):  
Nicole A. Repina ◽  
Xiaoping Bao ◽  
Joshua A. Zimmermann ◽  
David A. Joy ◽  
Ravi S. Kane ◽  
...  

ABSTRACTThe processes of cell proliferation, differentiation, migration, and self-organization during early embryonic development are governed by dynamic, spatially and temporally varying morphogen signals. Analogous tissue patterns emerge spontaneously in embryonic stem cell (ESC) models for gastrulation, but mechanistic insight into this self-organization is limited by a lack of molecular methods to precisely control morphogen signal dynamics. Here we combine optogenetic stimulation and single-cell imaging approaches to study self-organization of human pluripotent stem cells. Precise control of morphogen signal dynamics, achieved through activation of canonical Wnt/β-catenin signaling over a broad high dynamic range (>500-fold) using an optoWnt optogenetic system, drove broad transcriptional changes and mesendoderm differentiation of human ESCs at high efficiency (>95% cells). Furthermore, activating Wnt signaling in subpopulations of ESCs in 2D and 3D cultures induced cell self-organization and morphogenesis reminiscent of human gastrulation, including changes in cell migration and epithelial to mesenchymal transition. Our findings thus reveal an instructive role for Wnt in directing cell patterning in this ESC model for gastrulation.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3623-3623
Author(s):  
Magda Kucia ◽  
Ryan Reca ◽  
Janina Ratajczak ◽  
Mariusz Z. Ratajczak

Abstract We demonstrated that bone marrow (BM) stem cells are heterogenous and in addition to hematopoietic stem cells (HSC) BM also contains non-hematopoietic tissue committed stem cells (TCSC) for skeletal muscle, heart, neural tissue, epidermis and liver (Leukemia2004:18;29–40). In our follow up studies by employing multiparameter sorting we identified in murine BM a homogenous population of rare (~0.02% of BMMNC) Sca-1+ lin− CD45− cells that express by RQ-PCR and immunhistochemistry markers of pluripotent stem cells (PSC) such as SSEA-1, Oct-4, Nanog and Rex-1 and highly express Rif-1 telomerase protein. More important the direct electronmicroscopical analysis revealed that these cells display several features typical for primary embryonic stem cells such as i) small size (~3 μm in diameter), ii) poses large nuclei surrounded by a narrow rim of cytoplasm, and iii) contain open-type chromatin (euchromatin) that is typical for embryonic stem cells. Their number is highest in BM from young (1–2 month-old) mice and decreases with age. It is also significantly diminished in short living DBA/2J mice as compared to long living B6 mice. These cells in vitro respond strongly to several motomorphogens such as SDF-1, HGF and LIF and co-express the corresponding receptors such as CXCR4, c-met and LIF-R respectively on their surface. Interestingly, they adhere to fibronectin, and undergo emperipolesis in fibroblasts, thus they may be co-isolated with BM adherent cells. Furthermore, they are mobilized into peripheral blood during tissue/organ injuries (e.g., heart infarct, stroke). In in vitro cultures they differentiate into cells from different germ-layers (e.g., form neurospheres, grow cardiomyocytes). Thus, these findings support the theory of BM containing a reserve population of embryonic-like/pluripotent stem cells and it is also possible that several of the recently described BM-derived CD45− stem cell populations (e.g., MAPC, USSC or MIAMI cells) could in fact overlap with these rare non-hematopoietic CD45− stem cells identified by us, but due to the differences in the experimental approaches employed for their isolation and identification, were assigned different names. We postulate that this population of CD45− embryonic-like cells expressing pluripotent and tissue committed markers identified by us is an ideal source of cells for regeneration.


Sign in / Sign up

Export Citation Format

Share Document