scholarly journals MAR1 links membrane adhesion to membrane merger during cell-cell fusion in Chlamydomonas

2021 ◽  
Author(s):  
Jennifer F. Pinello ◽  
Yanjie Liu ◽  
William J Snell

Union of two gametes to form a zygote is a defining event in the life of sexual eukaryotes, yet the mechanisms that underlie cell-cell fusion during fertilization remain poorly characterized. Here, in studies of fertilization in the green alga, Chlamydomonas, we report identification of a membrane protein on minus gametes, Minus Adhesion Receptor 1 (MAR1), that is essential for the membrane attachment with plus gametes that immediately precedes lipid bilayer merger. We show that MAR1 forms a receptor pair with previously identified receptor FUS1 on plus gametes, whose ectodomain architecture we find is identical to a sperm adhesion protein conserved throughout plant lineages. Strikingly, before fusion, MAR1 is biochemically and functionally associated with the ancient, evolutionarily conserved eukaryotic class II fusion protein HAP2 on minus gametes. Thus, the integral membrane protein MAR1 provides a molecular link between membrane adhesion and bilayer merger during fertilization in Chlamydomonas.

1988 ◽  
Vol 8 (2) ◽  
pp. 564-570
Author(s):  
P A Maher ◽  
S J Singer

A monoclonal antibody (MAb 30B6) was recently described by Rogalski and Singer (J. Cell Biol. 101:785-801, 1985) which identified an integral membrane glycoprotein of chicken cells that was associated with a wide variety of sites of actin microfilament attachments to membranes. In this report, we present a further characterization of this integral protein. An immunochemical comparison was made of MAb 30B6 binding properties with those of two other MAbs, JG9 and JG22, which identify a component of a membrane protein complex that interacts with extracellular matrix proteins including fibronectin. We showed that the 110-kilodalton protein recognized by MAb 30B6 in extracts of chicken gizzard smooth muscle is identical, or closely related, to the protein that reacts with MAbs JG9 and JG22. These 110-kilodalton proteins are also structurally closely similar, if not identical, to one another as demonstrated by 125I-tryptic peptide maps. However, competition experiments showed that MAb 30B6 recognizes a different epitope from those recognized by MAbs JG9 and JG22. In addition, the 30B6 antigen is part of a complex that can be isolated on fibronectin columns. These results together establish that the 30B6 antigen is the same as, or closely similar to, the beta-chain of the protein complex named integrin, which is the complex on chicken fibroblast membranes that binds fibronectin. Although the 30B6 antigen is present in a wide range of tissues, its apparent molecular weight on gels varies in different tissues. These differences in apparent molecular weight are due, in large part, to differences in glycosylation.


2019 ◽  
Vol 53 (1) ◽  
pp. 67-91 ◽  
Author(s):  
Donghoon M. Lee ◽  
Elizabeth H. Chen

Cell–cell fusion is indispensable for creating life and building syncytial tissues and organs. Ever since the discovery of cell–cell fusion, how cells join together to form zygotes and multinucleated syncytia has remained a fundamental question in cell and developmental biology. In the past two decades, Drosophila myoblast fusion has been used as a powerful genetic model to unravel mechanisms underlying cell–cell fusion in vivo. Many evolutionarily conserved fusion-promoting factors have been identified and so has a surprising and conserved cellular mechanism. In this review, we revisit key findings in Drosophila myoblast fusion and highlight the critical roles of cellular invasion and resistance in driving cell membrane fusion.


2007 ◽  
Vol 81 (9) ◽  
pp. 4520-4532 ◽  
Author(s):  
Hector C. Aguilar ◽  
Kenneth A. Matreyek ◽  
Daniel Y. Choi ◽  
Claire Marie Filone ◽  
Sophia Young ◽  
...  

ABSTRACT The cytoplasmic tails of the envelope proteins from multiple viruses are known to contain determinants that affect their fusogenic capacities. Here we report that specific residues in the cytoplasmic tail of the Nipah virus fusion protein (NiV-F) modulate its fusogenic activity. Truncation of the cytoplasmic tail of NiV-F greatly inhibited cell-cell fusion. Deletion and alanine scan analysis identified a tribasic KKR motif in the membrane-adjacent region as important for modulating cell-cell fusion. The K1A mutation increased fusion 5.5-fold, while the K2A and R3A mutations decreased fusion 3- to 5-fold. These results were corroborated in a reverse-pseudotyped viral entry assay, where receptor-pseudotyped reporter virus was used to infect cells expressing wild-type or mutant NiV envelope glycoproteins. Differential monoclonal antibody binding data indicated that hyper- or hypofusogenic mutations in the KKR motif affected the ectodomain conformation of NiV-F, which in turn resulted in faster or slower six-helix bundle formation, respectively. However, we also present evidence that the hypofusogenic phenotypes of the K2A and R3A mutants were effected via distinct mechanisms. Interestingly, the K2A mutant was also markedly excluded from lipid rafts, where ∼20% of wild-type F and the other mutants can be found. Finally, we found a strong negative correlation between the relative fusogenic capacities of these cytoplasmic-tail mutants and the avidities of NiV-F and NiV-G interactions (P = 0.007, r 2 = 0.82). In toto, our data suggest that inside-out signaling by specific residues in the cytoplasmic tail of NiV-F can modulate its fusogenicity by multiple distinct mechanisms.


2014 ◽  
Vol 106 (2) ◽  
pp. 707a
Author(s):  
Ruben M. Markosyan ◽  
Shan Lu Liu ◽  
Fredric S. Cohen

2006 ◽  
Vol 80 (1) ◽  
pp. 51-61 ◽  
Author(s):  
Suany Ojeda ◽  
Tatiana G. Senkevich ◽  
Bernard Moss

ABSTRACT The vaccinia virus A16L open reading frame encodes a 378-amino-acid protein with a predicted C-terminal transmembrane domain and 20 invariant cysteine residues that is conserved in all sequenced members of the poxvirus family. The A16 protein was expressed late in infection and incorporated into intracellular virus particles with the N-terminal segment of the protein exposed on the surface. The cysteine residues were disulfide bonded via the poxvirus cytoplasmic redox system. Unsuccessful attempts to isolate a mutant virus with the A16L gene deleted suggested that the protein is essential for replication. To study the role of the A16 protein, we made a recombinant vaccinia virus that has the Escherichia coli lac operator system regulating transcription of the A16L gene. In the absence of inducer, A16 synthesis was repressed and plaque size and virus yield were greatly reduced. Nevertheless, virus morphogenesis occurred and normal-looking intracellular and extracellular virus particles formed. Purified virions made in the presence and absence of inducer were indistinguishable, though the latter had 60- to 100-fold-lower specific infectivity. A16-deficient virions bound to cells, but their cores did not penetrate into the cytoplasm. Furthermore, A16-deficient virions were unable to induce low-pH-triggered syncytium formation. The phenotype of the inducible A16L mutant was similar to those of mutants in which synthesis of the A21, A28, H2, or L5 membrane protein was repressed, indicating that at least five conserved viral proteins are required for entry of poxviruses into cells as well as for cell-cell fusion.


Virology ◽  
2006 ◽  
Vol 350 (2) ◽  
pp. 323-334 ◽  
Author(s):  
Rachel M. Schowalter ◽  
Mark A. Wurth ◽  
Hector C. Aguilar ◽  
Benhur Lee ◽  
Carole L. Moncman ◽  
...  

2014 ◽  
Vol 207 (1) ◽  
pp. 73-89 ◽  
Author(s):  
Nah-Young Shin ◽  
Hyewon Choi ◽  
Lynn Neff ◽  
Yumei Wu ◽  
Hiroaki Saito ◽  
...  

Cell–cell fusion is an evolutionarily conserved process that leads to the formation of multinucleated myofibers, syncytiotrophoblasts and osteoclasts, allowing their respective functions. Although cell–cell fusion requires the presence of fusogenic membrane proteins and actin-dependent cytoskeletal reorganization, the precise machinery allowing cells to fuse is still poorly understood. Using an inducible knockout mouse model to generate dynamin 1– and 2–deficient primary osteoclast precursors and myoblasts, we found that fusion of both cell types requires dynamin. Osteoclast and myoblast cell–cell fusion involves the formation of actin-rich protrusions closely associated with clathrin-mediated endocytosis in the apposed cell. Furthermore, impairing endocytosis independently of dynamin also prevented cell–cell fusion. Since dynamin is involved in both the formation of actin-rich structures and in endocytosis, our results indicate that dynamin function is central to the osteoclast precursors and myoblasts fusion process, and point to an important role of endocytosis in cell–cell fusion.


2004 ◽  
Vol 78 (11) ◽  
pp. 5996-6004 ◽  
Author(s):  
Maya Shmulevitz ◽  
Jennifer Corcoran ◽  
Jayme Salsman ◽  
Roy Duncan

ABSTRACT The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion.


Author(s):  
Nazia Thakur ◽  
Carina Conceicao ◽  
Ariel Isaacs ◽  
Stacey Human ◽  
Naphak Modhiran ◽  
...  

Although enveloped viruses canonically mediate particle entry through virus–cell fusion, certain viruses can spread by cell–cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell–cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell–cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell–cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP–Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell–cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.


Virology ◽  
2010 ◽  
Vol 404 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Mark A. Wurth ◽  
Rachel M. Schowalter ◽  
Everett Clinton Smith ◽  
Carole L. Moncman ◽  
Rebecca Ellis Dutch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document