scholarly journals Cell-Cell Fusion Induced by the Avian Reovirus Membrane Fusion Protein Is Regulated by Protein Degradation

2004 ◽  
Vol 78 (11) ◽  
pp. 5996-6004 ◽  
Author(s):  
Maya Shmulevitz ◽  
Jennifer Corcoran ◽  
Jayme Salsman ◽  
Roy Duncan

ABSTRACT The p10 fusion-associated small transmembrane protein of avian reovirus induces extensive syncytium formation in transfected cells. Here we show that p10-induced cell-cell fusion is restricted by rapid degradation of the majority of newly synthesized p10. The small ectodomain of p10 targets the protein for degradation following p10 insertion into an early membrane compartment. Paradoxically, conservative amino acid substitutions in the p10 ectodomain hydrophobic patch that eliminate fusion activity also increase p10 stability. The small amount of p10 that escapes intracellular degradation accumulates at the cell surface in a relatively stable form, where it mediates cell-cell fusion as a late-stage event in the virus replication cycle. The unusual relationship between a nonstructural viral membrane fusion protein and the replication cycle of a nonenveloped virus has apparently contributed to the evolution of a novel mechanism for restricting the extent of virus-induced cell-cell fusion.

2005 ◽  
Vol 79 (10) ◽  
pp. 6216-6226 ◽  
Author(s):  
Sandra Dawe ◽  
Jennifer A. Corcoran ◽  
Eileen K. Clancy ◽  
Jayme Salsman ◽  
Roy Duncan

ABSTRACT Select members of the Reoviridae are the only nonenveloped viruses known to induce syncytium formation. The fusogenic orthoreoviruses accomplish cell-cell fusion through a distinct class of membrane fusion-inducing proteins referred to as the fusion-associated small transmembrane (FAST) proteins. The p15 membrane fusion protein of baboon reovirus is unique among the FAST proteins in that it contains two hydrophobic regions (H1 and H2) recognized as potential transmembrane (TM) domains, suggesting a polytopic topology. However, detailed topological analysis of p15 indicated only the H1 domain is membrane spanning. In the absence of an N-terminal signal peptide, the H1 TM domain serves as a reverse signal-anchor to direct p15 membrane insertion and a bitopic Nexoplasmic/Ccytoplasmic topology. This topology results in the translocation of the smallest ectodomain (∼20 residues) of any known viral fusion protein, with the majority of p15 positioned on the cytosolic side of the membrane. Mutagenic analysis indicated the unusual presence of an N-terminal myristic acid on the small p15 ectodomain is essential to the fusion process. Furthermore, the only other hydrophobic region (H2) present in p15, aside from the TM domain, is located within the endodomain. Consequently, the p15 ectodomain is devoid of a fusion peptide motif, a hallmark feature of membrane fusion proteins. The exceedingly small, myristoylated ectodomain and the unusual topological distribution of structural motifs in this nonenveloped virus membrane fusion protein necessitate alternate models of protein-mediated membrane fusion.


2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Yuanmei Zhu ◽  
Danwei Yu ◽  
Hongxia Yan ◽  
Huihui Chong ◽  
Yuxian He

ABSTRACT The 2019 coronavirus disease (COVID-19), caused by the emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has posed serious threats to global public health and economic and social stabilities, calling for the prompt development of therapeutics and prophylactics. In this study, we first verified that SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) as a cell receptor and that its spike (S) protein mediates high membrane fusion activity. The heptad repeat 1 (HR1) sequence in the S2 fusion protein of SARS-CoV-2 possesses markedly increased α-helicity and thermostability, as well as a higher binding affinity with its corresponding heptad repeat 2 (HR2) site, than the HR1 sequence in S2 of severe acute respiratory syndrome coronavirus (SARS-CoV). Then, we designed an HR2 sequence-based lipopeptide fusion inhibitor, termed IPB02, which showed highly potent activities in inhibiting SARS-CoV-2 S protein-mediated cell-cell fusion and pseudovirus transduction. IPB02 also inhibited the SARS-CoV pseudovirus efficiently. Moreover, the structure-activity relationship (SAR) of IPB02 was characterized with a panel of truncated lipopeptides, revealing the amino acid motifs critical for its binding and antiviral capacities. Therefore, the results presented here provide important information for understanding the entry pathway of SARS-CoV-2 and the design of antivirals that target the membrane fusion step. IMPORTANCE The COVID-19 pandemic, caused by SARS-CoV-2, presents a serious global public health emergency in urgent need of prophylactic and therapeutic interventions. The S protein of coronaviruses mediates viral receptor binding and membrane fusion, thus being considered a critical target for antivirals. Herein, we report that the SARS-CoV-2 S protein has evolved a high level of activity to mediate cell-cell fusion, significantly differing from the S protein of SARS-CoV that emerged previously. The HR1 sequence in the fusion protein of SARS-CoV-2 adopts a much higher helical stability than the HR1 sequence in the fusion protein of SARS-CoV and can interact with the HR2 site to form a six-helical bundle structure more efficiently, underlying the mechanism of the enhanced fusion capacity. Also, importantly, the design of membrane fusion inhibitors with high potencies against both SARS-CoV-2 and SARS-CoV has provided potential arsenals to combat the pandemic and tools to exploit the fusion mechanism.


2008 ◽  
Vol 82 (24) ◽  
pp. 12039-12048 ◽  
Author(s):  
Surbhi Jain ◽  
Lori W. McGinnes ◽  
Trudy G. Morrison

ABSTRACT Newcastle disease virus (NDV) fusion (F) protein directs membrane fusion, which is required for virus entry and cell-cell fusion. We have previously shown that free thiols are present in cell surface-expressed NDV F protein and that blocking the production of free thiols by thiol-disulfide exchange inhibitors inhibited the membrane fusion mediated by F protein (J Virol. 81:2328-2339, 2007). Extending these observations, we evaluated the role of the overexpression of two disulfide bond isomerases, protein disulfide isomerase (PDI) and ERdj5, in cell-cell fusion mediated by NDV glycoproteins. The overexpression of these isomerases resulted in significantly increased membrane fusion, as measured by syncytium formation and content mixing. The overexpression of these isomerases enhanced the production of free thiols in F protein when expressed without hemagglutination-neuraminidase (HN) protein but decreased free thiols in F protein expressed with HN protein. By evaluating the binding of conformation-sensitive antibodies, we found that the overexpression of these isomerases favored a postfusion conformation of surface-expressed F protein in the presence of HN protein. These results suggest that isomerases belonging to the PDI family catalyze the production of free thiols in F protein, and free thiols in F protein facilitate membrane fusion mediated by F protein.


2021 ◽  
Author(s):  
J. Lizbeth Reyes Zamora ◽  
Victoria Ortega ◽  
Gunner P. Johnston ◽  
Jenny Li ◽  
Hector C. Aguilar

Nipah virus (NiV) is a zoonotic bat henipavirus in the family Paramyxoviridae. NiV is deadly to humans, infecting host cells by direct fusion of the viral and host-cell plasma membranes. This membrane fusion process is coordinated by the receptor-binding attachment (G) and fusion (F) glycoproteins. Upon G-receptor binding, F fuses membranes via a cascade that sequentially involves F-triggering, fusion-pore formation, and viral or genome entry into cells. Using NiV as an important paramyxoviral model, we identified two novel regions in F that modulate the membrane fusion cascade. For paramyxoviruses and other viral families with class I fusion proteins, the HR1 and HR2 regions in the fusion protein pre-fusion conformation bind to form a six-helix bundle in the post-fusion conformation. Here, structural comparisons between the F pre-fusion and post-fusion conformations revealed that a short loop region (N1) undergoes dramatic spatial reorganization, and a short alpha helix (N4) undergoes secondary structural changes. The roles of the N1 and N4 regions during the membrane fusion cascade, however, remain unknown for henipaviruses and paramyxoviruses. By performing alanine scan mutagenesis and various functional analyses, we report that specific residues within these regions alter various steps in the membrane fusion cascade. While the N1 region affects early F-triggering, the N4 region affects F-triggering, F thermostability, and extensive fusion-pore expansion during syncytia formation, also uncovering a link between F/G interactions and F-triggering. These novel mechanistic roles expand our understanding of henipaviral and paramyxoviral F triggering, viral entry, and cell-cell fusion (syncytia), a pathognomonic feature of paramyxoviral infections. IMPORTANCE Henipaviruses infect bats, agriculturally important animals, and humans, with high mortality rates approaching ∼75% in humans. Known human outbreaks have concentrated in southeast Asia and Australia. Further, about 20 new henipaviral species have been recently discovered in bats, with geographical spans in Asia, Africa and South America. The development of antiviral therapeutics requires a thorough understanding of the mechanism of viral entry into host cells. In this study, we discovered novel roles of two regions within the fusion protein of the deadly henipavirus NiV. Such roles were in allowing viral entry into host cells and cell-cell fusion, a pathological hallmark of this and other paramyxoviruses. These novel roles were in the previously undescribed N1 and N4 regions within the fusion protein, modulating early and late steps of these important process of viral infection and henipaviral disease. Notably, this knowledge may apply to other henipaviruses and more broadly to other paramyxoviruses.


2008 ◽  
Vol 82 (12) ◽  
pp. 5986-5998 ◽  
Author(s):  
Joanna Rawling ◽  
Blanca García-Barreno ◽  
José A. Melero

ABSTRACT Cell entry by paramyxoviruses requires fusion of the viral envelope with the target cell membrane. Fusion is mediated by the viral fusion (F) glycoprotein and usually requires the aid of the attachment glycoprotein (G, H or HN, depending on the virus). Human respiratory syncytial virus F protein (FRSV) is able to mediate membrane fusion in the absence of the attachment G protein and is unique in possessing two multibasic furin cleavage sites, separated by a region of 27 amino acids (pep27). Cleavage at both sites is required for cell-cell fusion. We have investigated the significance of the two cleavage sites and pep27 in the context of Sendai virus F protein (FSeV), which possesses a single monobasic cleavage site and requires both coexpression of the HN attachment protein and trypsin in order to fuse cells. Inclusion of both FRSV cleavage sites in FSeV resulted in a dramatic increase in cell-cell fusion activity in the presence of HN. Furthermore, chimeric FSeV mutants containing both FRSV cleavage sites demonstrated cell-cell fusion in the absence of HN. The presence of two multibasic cleavage sites may therefore represent a strategy to regulate activation of a paramyxovirus F protein for cell-cell fusion in the absence of an attachment protein.


2005 ◽  
Vol 79 (13) ◽  
pp. 8090-8100 ◽  
Author(s):  
Jayme Salsman ◽  
Deniz Top ◽  
Julie Boutilier ◽  
Roy Duncan

ABSTRACT The fusion-associated small transmembrane (FAST) proteins of the fusogenic reoviruses are the only known examples of membrane fusion proteins encoded by nonenveloped viruses. While the involvement of the FAST proteins in mediating extensive syncytium formation in virus-infected and -transfected cells is well established, the nature of the fusion reaction and the role of cell-cell fusion in the virus replication cycle remain unclear. To address these issues, we analyzed the syncytial phenotype induced by four different FAST proteins: the avian and Nelson Bay reovirus p10, reptilian reovirus p14, and baboon reovirus p15 FAST proteins. Results indicate that FAST protein-mediated cell-cell fusion is a relatively nonleaky process, as demonstrated by the absence of significant [3H]uridine release from cells undergoing fusion and by the resistance of these cells to treatment with hygromycin B, a membrane-impermeable translation inhibitor. However, diminished membrane integrity occurred subsequent to extensive syncytium formation and was associated with DNA fragmentation and chromatin condensation, indicating that extensive cell-cell fusion activates apoptotic signaling cascades. Inhibiting effector caspase activation or ablating the extent of syncytium formation, either by partial deletion of the avian reovirus p10 ectodomain or by antibody inhibition of p14-mediated cell-cell fusion, all resulted in reduced membrane permeability changes. These observations suggest that the FAST proteins do not possess intrinsic membrane-lytic activity. Rather, extensive FAST protein-induced syncytium formation triggers an apoptotic response that contributes to altered membrane integrity. We propose that the FAST proteins have evolved to serve a dual role in the replication cycle of these fusogenic nonenveloped viruses, with nonleaky cell-cell fusion initially promoting localized cell-cell transmission of the infection followed by enhanced progeny virus release from apoptotic syncytia and systemic dissemination of the infection.


2019 ◽  
Vol 93 (13) ◽  
Author(s):  
Birgit G. Bradel-Tretheway ◽  
J. Lizbeth Reyes Zamora ◽  
Jacquelyn A. Stone ◽  
Qian Liu ◽  
Jenny Li ◽  
...  

ABSTRACTNipah and Hendra viruses (NiV and HeV) exhibit high lethality in humans and are biosafety level 4 (BSL-4) paramyxoviruses in the growing genusHenipavirus. The attachment (G) and fusion (F) envelope glycoproteins are both required for viral entry into cells and for cell-cell fusion, which is pathognomonic of henipaviral infections. Here, we compared the fusogenic capacities between homologous and heterologous pairs of NiV and HeV glycoproteins. Importantly, to accurately measure their fusogenic capacities, as these depend on glycoprotein cell surface expression (CSE) levels, we inserted identical extracellular tags to both fusion (FLAG tags) or both attachment (hemagglutinin [HA] tags) glycoproteins. Importantly, these tags were placed in extracellular sites where they did not affect glycoprotein expression or function. NiV and HeV glycoproteins induced comparable levels of homologous HEK293T cell-cell fusion. Surprisingly, however, while the heterologous NiV F/HeV G (NF/HG) combination yielded a hypofusogenic phenotype, the heterologous HeV F/NiV G (HF/NG) combination yielded a hyperfusogenic phenotype. Pseudotyped viral entry levels primarily corroborated the fusogenic phenotypes of the glycoprotein pairs analyzed. Furthermore, we constructed G and F chimeras that allowed us to map the overall regions in G and F that contributed to these hyperfusogenic or hypofusogenic phenotypes. Importantly, the fusogenic phenotypes of the glycoprotein combinations negatively correlated with the avidities of F-G interactions, supporting the F/G dissociation model of henipavirus-induced membrane fusion, even in the context of heterologous glycoprotein pairs.IMPORTANCEThe NiV and HeV henipaviruses are BSL-4 pathogens transmitted from bats. NiV and HeV often lead to human death and animal diseases. The formation of multinucleated cells (syncytia) is a hallmark of henipaviral infections and is caused by fusion of cells coordinated by interactions of the viral attachment (G) and fusion (F) glycoproteins. We found via various assays that viral entry and syncytium formation depend on the viral origin of the glycoproteins, with HeV F and NiV G promoting higher membrane fusion levels than their counterparts. This is important knowledge, since both viruses use the same bat vector species and potential coinfections of these or subsequent hosts may alter the outcome of disease.


2004 ◽  
Vol 78 (8) ◽  
pp. 4342-4351 ◽  
Author(s):  
Jennifer A. Corcoran ◽  
Roy Duncan

ABSTRACT Reptilian reovirus is one of a limited number of nonenveloped viruses that are capable of inducing cell-cell fusion. A small, hydrophobic, basic, 125-amino-acid fusion protein encoded by the first open reading frame of a bicistronic viral mRNA is responsible for this fusion activity. Sequence comparisons to previously characterized reovirus fusion proteins indicated that p14 represents a new member of the fusion-associated small transmembrane (FAST) protein family. Topological analysis revealed that p14 is a representative of a minor subset of integral membrane proteins, the type III proteins Nexoplasmic/Ccytoplasmic (Nexo/Ccyt), that lack a cleavable signal sequence and use an internal reverse signal-anchor sequence to direct membrane insertion and protein topology. This topology results in the unexpected, cotranslational translocation of the essential myristylated N-terminal domain of p14 across the cell membrane. The topology and structural motifs present in this novel reovirus membrane fusion protein further accentuate the diversity and unusual properties of the FAST protein family and clearly indicate that the FAST proteins represent a third distinct class of viral membrane fusion proteins.


Sign in / Sign up

Export Citation Format

Share Document