scholarly journals Explainable Brain Disease Classification and Relevance-Guided Deep Learning

Author(s):  
Christian Tinauer ◽  
Stefan Heber ◽  
Lukas Pirpamer ◽  
Anna Damulina ◽  
Reinhold Schmidt ◽  
...  

Deep neural networks are increasingly used for neurological disease classification by MRI, but the networks' decisions are not easily interpretable by humans. Heat mapping by deep Taylor decomposition revealed that (potentially misleading) image features even outside of the brain tissue are crucial for the classifier's decision. We propose a regularization technique to train convolutional neural network (CNN) classifiers utilizing relevance-guided heat maps calculated online during training. The method was applied using T1-weighted MR images from 128 subjects with Alzheimer's disease (mean age=71.9+-8.5 years) and 290 control subjects (mean age=71.3+-6.4 years). The developed relevance-guided framework achieves higher classification accuracies than conventional CNNs but more importantly, it relies on less but more relevant and physiological plausible voxels within brain tissue. Additionally, preprocessing effects from skull stripping and registration are mitigated, rendering this practically useful in deep learning neuroimaging studies. Understanding the decision mechanisms underlying CNNs, these results challenge the notion that unprocessed T1-weighted brain MR images in standard CNNs yield higher classification accuracy in Alzheimer's disease than solely atrophy.

Author(s):  
Yanteng Zhang ◽  
Qizhi Teng ◽  
Linbo Qing ◽  
Yan Liu ◽  
Xiaohai He

Alzheimer’s disease (AD) is a degenerative brain disease and the most common cause of dementia. In recent years, with the widespread application of artificial intelligence in the medical field, various deep learning-based methods have been applied for AD detection using sMRI images. Many of these networks achieved AD vs HC (Healthy Control) classification accuracy of up to 90%but with a large number of computational parameters and floating point operations (FLOPs). In this paper, we adopt a novel ghost module, which uses a series of cheap operations of linear transformation to generate more feature maps, embedded into our designed ResNet architecture for task of AD vs HC classification. According to experiments on the OASIS dataset, our lightweight network achieves an optimistic accuracy of 97.92%and its total parameters are dozens of times smaller than state-of-the-art deep learning networks. Our proposed AD classification network achieves better performance while the computational cost is reduced significantly.


2020 ◽  
Vol 30 (06) ◽  
pp. 2050032
Author(s):  
Wei Feng ◽  
Nicholas Van Halm-Lutterodt ◽  
Hao Tang ◽  
Andrew Mecum ◽  
Mohamed Kamal Mesregah ◽  
...  

In the context of neuro-pathological disorders, neuroimaging has been widely accepted as a clinical tool for diagnosing patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI). The advanced deep learning method, a novel brain imaging technique, was applied in this study to evaluate its contribution to improving the diagnostic accuracy of AD. Three-dimensional convolutional neural networks (3D-CNNs) were applied with magnetic resonance imaging (MRI) to execute binary and ternary disease classification models. The dataset from the Alzheimer’s disease neuroimaging initiative (ADNI) was used to compare the deep learning performances across 3D-CNN, 3D-CNN-support vector machine (SVM) and two-dimensional (2D)-CNN models. The outcomes of accuracy with ternary classification for 2D-CNN, 3D-CNN and 3D-CNN-SVM were [Formula: see text]%, [Formula: see text]% and [Formula: see text]% respectively. The 3D-CNN-SVM yielded a ternary classification accuracy of 93.71%, 96.82% and 96.73% for NC, MCI and AD diagnoses, respectively. Furthermore, 3D-CNN-SVM showed the best performance for binary classification. Our study indicated that ‘NC versus MCI’ showed accuracy, sensitivity and specificity of 98.90%, 98.90% and 98.80%; ‘NC versus AD’ showed accuracy, sensitivity and specificity of 99.10%, 99.80% and 98.40%; and ‘MCI versus AD’ showed accuracy, sensitivity and specificity of 89.40%, 86.70% and 84.00%, respectively. This study clearly demonstrates that 3D-CNN-SVM yields better performance with MRI compared to currently utilized deep learning methods. In addition, 3D-CNN-SVM proved to be efficient without having to manually perform any prior feature extraction and is totally independent of the variability of imaging protocols and scanners. This suggests that it can potentially be exploited by untrained operators and extended to virtual patient imaging data. Furthermore, owing to the safety, noninvasiveness and nonirradiative properties of the MRI modality, 3D-CNN-SMV may serve as an effective screening option for AD in the general population. This study holds value in distinguishing AD and MCI subjects from normal controls and to improve value-based care of patients in clinical practice.


2020 ◽  
Vol 21 (S21) ◽  
Author(s):  
Taeho Jo ◽  
◽  
Kwangsik Nho ◽  
Shannon L. Risacher ◽  
Andrew J. Saykin

Abstract Background Alzheimer’s disease (AD) is the most common type of dementia, typically characterized by memory loss followed by progressive cognitive decline and functional impairment. Many clinical trials of potential therapies for AD have failed, and there is currently no approved disease-modifying treatment. Biomarkers for early detection and mechanistic understanding of disease course are critical for drug development and clinical trials. Amyloid has been the focus of most biomarker research. Here, we developed a deep learning-based framework to identify informative features for AD classification using tau positron emission tomography (PET) scans. Results The 3D convolutional neural network (CNN)-based classification model of AD from cognitively normal (CN) yielded an average accuracy of 90.8% based on five-fold cross-validation. The LRP model identified the brain regions in tau PET images that contributed most to the AD classification from CN. The top identified regions included the hippocampus, parahippocampus, thalamus, and fusiform. The layer-wise relevance propagation (LRP) results were consistent with those from the voxel-wise analysis in SPM12, showing significant focal AD associated regional tau deposition in the bilateral temporal lobes including the entorhinal cortex. The AD probability scores calculated by the classifier were correlated with brain tau deposition in the medial temporal lobe in MCI participants (r = 0.43 for early MCI and r = 0.49 for late MCI). Conclusion A deep learning framework combining 3D CNN and LRP algorithms can be used with tau PET images to identify informative features for AD classification and may have application for early detection during prodromal stages of AD.


2019 ◽  
Author(s):  
Vijaya B. Kolachalama ◽  
Shangran Qiu ◽  
Prajakta S. Joshi ◽  
Matthew I. Miller ◽  
Chonghua Xue ◽  
...  

AbstractAlzheimer’s disease (AD) is the primary cause of dementia worldwide (1), with an increasing morbidity burden that may outstrip diagnosis and management capacity as the population ages. Current methods integrate patient history, neuropsychological testing and magnetic resonance imaging (MRI) to identify likely cases, yet effective practices remain variably-applied and lacking in sensitivity and specificity (2). Here we report an explainable deep learning strategy that delineates unique AD signatures from multimodal inputs of MRI, age, gender, and mini-mental state examination (MMSE) score. Our framework linked a fully convolutional network (FCN) to a multilayer perceptron (MLP) to construct high resolution maps of disease probability from local brain structure. This enabled precise, intuitive visualization of individual AD risk en route to accurate diagnosis. The model was trained using clinically-diagnosed AD and cognitively normal (NC) subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n=417) (3), and validated on three independent cohorts: the Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (AIBL, n=382) (4), the Framingham Heart Study (FHS, n=102) (5), and the National Alzheimer’s Coordinating Center (NACC, n=582) (6). Model performance was consistent across datasets, with mean accuracy values of 0.966, 0.948, 0.815, and 0.916 for ADNI, AIBL, FHS and NACC, respectively. Moreover, our approach exceeded the diagnostic performance of a multi-institutional team of practicing neurologists (n=11), and high-risk cerebral regions predicted by the model closely tracked postmortem histopathological findings. This framework provides a clinically-adaptable strategy for using routinely available imaging techniques such as MRI to generate nuanced neuroimaging signatures for AD diagnosis, as well as a generalizable approach for linking deep learning to pathophysiological processes in human disease.


2021 ◽  
Author(s):  
Xin Xing ◽  
Liangliang Liu ◽  
Qi Yin ◽  
Gongbo Liang

Alzheimer's disease (AD) is a non-treatable and non-reversible disease that affects about 6% of people who are 65 and older. Brain magnetic resonance imaging (MRI) is a pseudo-3D imaging modality that is widely used for AD diagnosis. Convolutional neural networks with 3D kernels (3D CNNs) are often the default choice for deep learning based MRI analysis. However, 3D CNNs are usually computationally costly and data-hungry. Such disadvantages post a barrier of using modern deep learning techniques in the medical imaging domain, in which the number of data can be used for training is usually limited. In this work, we propose three approaches that leverage 2D CNNs on 3D MRI data. We test the proposed methods on the Alzheimer's Disease Neuroimaging Initiative dataset across two popular 2D CNN architectures. The evaluation results show that the proposed method improves the model performance on AD diagnosis by 8.33% accuracy or 10.11% auROC, while significantly reduce the training time by over 89%. We also discuss the potential causes for performance improvement and the limitation. We believe this work can serve as a strong baseline for future researchers.


Brain ◽  
2020 ◽  
Vol 143 (6) ◽  
pp. 1920-1933 ◽  
Author(s):  
Shangran Qiu ◽  
Prajakta S Joshi ◽  
Matthew I Miller ◽  
Chonghua Xue ◽  
Xiao Zhou ◽  
...  

Abstract Alzheimer’s disease is the primary cause of dementia worldwide, with an increasing morbidity burden that may outstrip diagnosis and management capacity as the population ages. Current methods integrate patient history, neuropsychological testing and MRI to identify likely cases, yet effective practices remain variably applied and lacking in sensitivity and specificity. Here we report an interpretable deep learning strategy that delineates unique Alzheimer’s disease signatures from multimodal inputs of MRI, age, gender, and Mini-Mental State Examination score. Our framework linked a fully convolutional network, which constructs high resolution maps of disease probability from local brain structure to a multilayer perceptron and generates precise, intuitive visualization of individual Alzheimer’s disease risk en route to accurate diagnosis. The model was trained using clinically diagnosed Alzheimer’s disease and cognitively normal subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset (n = 417) and validated on three independent cohorts: the Australian Imaging, Biomarker and Lifestyle Flagship Study of Ageing (AIBL) (n = 382), the Framingham Heart Study (n = 102), and the National Alzheimer’s Coordinating Center (NACC) (n = 582). Performance of the model that used the multimodal inputs was consistent across datasets, with mean area under curve values of 0.996, 0.974, 0.876 and 0.954 for the ADNI study, AIBL, Framingham Heart Study and NACC datasets, respectively. Moreover, our approach exceeded the diagnostic performance of a multi-institutional team of practicing neurologists (n = 11), and high-risk cerebral regions predicted by the model closely tracked post-mortem histopathological findings. This framework provides a clinically adaptable strategy for using routinely available imaging techniques such as MRI to generate nuanced neuroimaging signatures for Alzheimer’s disease diagnosis, as well as a generalizable approach for linking deep learning to pathophysiological processes in human disease.


Sign in / Sign up

Export Citation Format

Share Document