scholarly journals Real-time monitoring and analysis of SARS-CoV-2 nanopore sequencing with minoTour.

2021 ◽  
Author(s):  
Rory James Munro ◽  
Nadine Holmes ◽  
Christopher Moore ◽  
Matthew Carlile ◽  
Alex Payne ◽  
...  

Motivation: The ongoing SARS-CoV-2 pandemic has demonstrated the utility of real-time analysis of sequencing data, with a wide range of databases and resources for analysis now available. Here we show how the real-time nature of Oxford Nanopore Technologies sequencers can accelerate consensus generation, lineage and variant status assignment. We exploit the fact that multiplexed viral sequencing libraries quickly generate sufficient data for the majority of samples, with diminishing returns on remaining samples as the sequencing run progresses. We demonstrate methods to determine when a sequencing run has passed this point in order to reduce the time required and cost of sequencing. Results: We extended MinoTour, our real-time analysis and monitoring platform for nanopore sequencers, to provide SARS-CoV2 analysis using ARTIC network pipelines. We additionally developed an algorithm to predict which samples will achieve sufficient coverage, automatically running the ARTIC medaka informatics pipeline once specific coverage thresholds have been reached on these samples. After testing on run data, we find significant run time savings are possible, enabling flow cells to be used more efficiently and enabling higher throughput data analysis. The resultant consensus genomes are assigned both PANGO lineage and variant status as defined by Public Health England. Samples from within individual runs are used to generate phylogenetic trees incorporating optional background samples as well as summaries of individual SNPs. As minoTour uses ARTIC pipelines, new primer schemes and pathogens can be added to allow minoTour to aid in real-time analysis of pathogens in the future.

2013 ◽  
Vol 699 ◽  
pp. 718-723 ◽  
Author(s):  
Gertz I. Likhtenshtein

A series of fluorescent methods of analysis and investigation of system based on the use of stilbenes and potentially important in biochemistry, biophysics, biotechnology, and biomedicine were proposed and developed. In these methods, two new types of stilbene molecular probes have been used: (i) fluorescent photochrome molecules and (ii) super molecules containing fluorescent and fluorescent quenching segments. These methods utilize the following photochemical and photophysical phenomena: the fluorescence and phosphorescence quenching, photochrome photoisomerization, and triplet–triplet and singlet–singlet energy transfer. The fluorescence properties of the new probes were intensively exploited as the basis of several methodologies that include a real-time analysis of nitric oxide, immunoassay in solution, investigation of molecular dynamics of biomembranes in a wide range characteristic times, and characterization of sensors for antibodies. These techniques may be adapted to fibro-optic sensoring.


2021 ◽  
Author(s):  
Héctor Rodriguez-Perez ◽  
Laura Ciuffreda ◽  
Carlos Flores

Abstract The study of microbial communities and their applications have been leveraged by the advances in sequencing techniques and bioinformatics tools. The Oxford Nanopore Technologies long read sequencing by nanopores provides a portable and cost-efficient platform for sequencing assays opening the possibility of its application outside specialized environments and real-time analysis of data. To complement the existing efficient library preparation protocol with a streamlined analytic workflow, here we present NanoRTax, a nextflow pipeline for nanopore 16S rRNA amplicon data that features state-of-art taxonomic classification tools and real-time capability. The pipeline is paired with a web-based visual interface to enable user-friendly inspections of the experiment in progress.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


2020 ◽  
Vol 67 (4) ◽  
pp. 1197-1205 ◽  
Author(s):  
Yuki Totani ◽  
Susumu Kotani ◽  
Kei Odai ◽  
Etsuro Ito ◽  
Manabu Sakakibara

2021 ◽  
Vol 2021 (4) ◽  
pp. 7-16
Author(s):  
Sivaraman Eswaran ◽  
Aruna Srinivasan ◽  
Prasad Honnavalli

2021 ◽  
Vol 57 (28) ◽  
pp. 3430-3444
Author(s):  
Vinod Kumar

This article describes our journey and success stories in the development of chemical warfare detection, detailing the range of unique chemical probes and methods explored to achieve the specific detection of individual agents in realistic environments.


Sign in / Sign up

Export Citation Format

Share Document